
 

AFRL-IF-WP-TR-2006-1532 
 
MULTI-TIMESCALE COMPLEX 
ADAPTATION 
 
James Schwaber  
Raj Vadigepalli 
Praveen Chakravarthula  
Thomas Jefferson University  
102 Walnut St.  
Philadelphia, PA 19107-5587 
 
 
MARCH 2006 
 
Final Report for 05 September 2001 – 31 December 2005 
 
 
 
 
 

Approved for public release; distribution is unlimited.  
 

STINFO COPY 
 
 
 
 
 
 
 

 
INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 



 
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or 
permission to manufacture, use, or sell any patented invention that may relate to them.  
 
This report was cleared for public release by the Air Force Research Laboratory Wright Site 
(AFRL/WS) Public Affairs Office and is available to the general public, including foreign 
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
 
AFRL-IF-WP-TR-2006-1532 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
//Signature//      //Signature// 
JAMES B. MONCRIEF, Proj Eng JAMES S. WILLIAMSON, Chief 
Embedded Information Systems Branch Embedded Information Systems Branch 
Advanced Computing Division  Advanced Computing Division 
Information Directorate  Information Directorate 
 
 
 
 
//Signature// 
WALTER B. HARTMAN, Actg Chief 
Wright Site 
Information Directorate 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

March 2006 Final  09/05/2001 – 12/31/2005 
5a.  CONTRACT NUMBER 

F30602-01-2-0578 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 

MULTI-TIMESCALE COMPLEX ADAPTATION 

5c.  PROGRAM ELEMENT NUMBER 
61101E 

5d.  PROJECT NUMBER 

BIOC 
5e.  TASK NUMBER 

M2 

6.  AUTHOR(S) 

James Schwaber  
Raj Vadigepalli 
Praveen Chakravarthula 

5f.  WORK UNIT NUMBER 

  94 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

  REPORT NUMBER 

Thomas Jefferson University  
102 Walnut St.  
Philadelphia, PA 19107-5587 

 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
ACRONYM(S) 

AFRL-IF-WP Information Directorate 
Air Force Research Laboratory  
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7334 

Defense Advanced Research Projects            
Agency/Information Processing 
Technology Office (DARPA/IPTO) 
3701 Fairfax Drive                                         
Arlington, VA 22203    

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

       AFRL-IF-WP-TR-2006-1532 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 
Report contains color. PAO Case Number: AFRL/WS 06-2112, 30 Aug. 2006. 

14.  ABSTRACT 
The overall goal of the project was to develop structured approaches to modeling complex gene regulation dynamics 
underlying cellular adaptation in mammalian systems. This involves integration of two erstwhile disjoint aspects: 
mathematical modeling and bioinformatics of high-throughput biological data. As part of a structured approach to tackle 
this problem, we have developed methods and software tools for identification of 1) robust patterns of gene expression 
using a meta-clustering approach, 2) network structures from these patterns, and 3) a continuous-time regulatory network 
model based on temporally discrete gene expression data and predicted network structures. A web-based, graphical user 
interface was developed for the network structure prediction software, PAINT, and has been released as a DARPA 
BioSPICE module. We have successfully employed our structured approach in the study of various gene regulatory 
networks from in silico model systems, yeast cell cycle, neuronal differentiation and adaptation, circadian rhythms, and 
cellular response to pathogens. 

15.  SUBJECT TERMS 
bioinformatics, biological modeling, circadian rhythms, gene regulation, meta-clustering, BioSPICE, Promoter Analysis 
and Interactive Network Toolset (PAINT) 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT:

SAR 

18.  NUMBER 
OF PAGES 

    76 
         James B. Moncrief 
19b.  TELEPHONE NUMBER (Include Area Code) 

(937) 255-6548 x3606 

 Standard Form 298 (Rev. 8-98)   
Prescribed by ANSI Std. Z39-18 

 



iii 

Table of Contents 

1. Summary………………………………………………………..…………………………..1  

2. Introduction…………………………………………………………………………………2 
3. Modeling and Identification of Gene Regulatory Networks………………………………..5 

3.1 Unstructured Approaches……………………………………………………………...6 
3.2 A Structured Approach………………………………………………………………..6 
3.3 Data Quantity and Quality…………………………………………………………….9 

4. A Novel Meta-Clustering Algorithm to Combine the Results from Different Clustering 
Techniques……………………………………………………………………………………..11 

4.1 Meta-clustering Algorithm…………………………………………………………….11 
4.2 Experimental Results…………………………………………………………………..11 

5. PAINT: Promoter Analysis and Interaction Network Toolset for Gene Regulatory  
Network Structure Prediction………………….…………………………………………..…..15 
     5.1 Architecture Overview………………………………………………………………….15 
     5.2 PAINT Modules………………………………………………………………………...16 

6. BioSPICE Software; TJU Contributed Modules……………………………………………20 
6.1 MetaCluster Toolbox…………………………………………………………………..20 
6.2 CloneUpdater…………………………………………………………………………..21 
6.3 PAINT………………………………………………………………………………….22 
6.4 Updated PAINT Module (since June 2005)……………………………………………25 

7. Case Studies…………………………………………………………………………………32 
7.1 Experimental System for Case Studies 1 and 2………………………………………..32 
7.2 Case Study 1: Neuronal Adaptation…………………………………………………...32 
7.3 Case Study 2: Neuronal Differentiation……………………………………………….36 
7.4 Case Study 3: Circadian Rhythms……………………………………………………..38 
7.5 Case Study 4: Pre-Apoptosis in Kidney Cells Exposed to Pathogen Staphylococcal 
Enterotoxin B (SEB)……………………………………………………………………….40 

 

8. Novel Methodology for Structured Modeling of Gene Regulatory Networks………………45 
8.1 Nuclear Connectivity Determination…………………………………………………...46 

8.1.1 Clustering………………………………………………………………………...46 
8.1.2 TRE Search………………………………………………………………………46 
8.1.3 Assembling Nuclear Connectivity……………………………………………….47 

8.2 Model Identification……………………………………………………………………47 
8.3 Case Study: Yeast Cell Cycle…………………………………………………………..49 

8.3.1 Clustering………………………………………………………………………...50 
8.3.2 TRE Search………………………………………………………………………50 
8.3.3 Assembling Nuclear Connectivity……………………………………………….52 
8.3.4 Model Identification……………………………………………………………...53 
8.3.5 Model Identification Results……………………………………………………..53 

9. Conclusions…………………………………………………………………………………..58 
10. References…………………………………………………………………………………..59 

11. List of Acronyms……………………………………………………………………………65 



iv 

 
Figures 

 
1. A schematic of the Transcriptional Regulatory Network Analysis Workflow………………..4 

2. Unstructured and structured approaches to gene regulatory network identification…………..8 

3. Meta-clustering approach to combine different clustering results……………………………12 

4. Dendrograms produced by the meta-clustering approach on the six datasets………………...14 

5. A schematic of PAINT workflow……………………………………………………………..15 

6. MetaCluster Toolbox enabled combination of multiple clustering results……………………20 

7. CloneUpdater updated clone annotation based on latest UniGene release……………………21 

8. PAINT Feasnet Builder acquired promoter sequences, construction of Candidate                        
Interaction Matrix (CIM) based on TREs present on promoter Sequences…….……….…….22 

9. PAINT FeasnetViewer: visualized TRE occurrence on promoter sequences of genes,                    
color coded based on statistical significance………………………………………………….24 

10. PtPlot module indication of TRE significance scores………………………………………...25 

11. Dashboard workflow using TRJU modules for Gene Regulatory Network analysis…………25 

12. PAINT Workflow, and the New Analysis dialog on the current Dashboard………………....26 

13. PAINT GUI 1.0 Architecture overview………………………………………………………27 

14. PAINT Tasks in the GUI and the corresponding workflow schematic……………………….28 

15. The distribution of interactions for (a) the genes and (b) the TREs in the DIFF155………….33 

16. A representation of the candidate interaction matrix for DIFF155……………………………34 

17. A subset of the candidate intercation matrix for DIFF155…………………………………….35 

18. A network layout of the top 5 TREs in DIFF155 CIM (p <0.1)………………………………36 

19. The distribution of interactions for (a) the genes and (b) the TREs in the ANG578………….36 

20. A representation of the candidate interaction matrix for ANG578……………………………37 

21. Circadian Regulated Genes in the SCN (Figure 1A from Panda et al)………………………..38 

22. Experimental data for AP-1 activity corresponding to TRE significance scores……………...39 

23. Significance scores of Composite Elements…………………………………………………...40 

24. DIFF 525 Cluster analysis results via k-means algorithm……………………………………..41 

25. Regulatory network (from PAINT data) predicted TFs (Table 2)……………………………..43 

26. Integrated components of the structured approach to gene regulatory network……………….45 

27. Centers of clusters enriched for the same TRE (or pair of TREs)……………………………..52 

28. Representative identification of results for genes modeled as targets of MBP1, SWI4……….55 

29. Representative identification of results for genes modeled as targets of ACE2, SWI5……….57 



v 

Tables 
 
1. Performance of all the methods considered, when applied on the six data sets……………....13 
2. Summary of PAINT predicted TFs relevant to the SEB response in the RPTEC…………….44 
3. Number of clusters in which specific TREs were statistically over-represented……………...51
4. Model Identification Results…………………………………………………………………..56
 
 



vi 

Acknowledgements 

This work has been performed under financial support from DARPA BioCOMP program (F30602-01-2-
0578), PI: Dr. James S. Schwaber, Thomas Jefferson University. We would like to thank Dr. Sri Kumar 
and his associates for their support throughout the project duration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 

1 Summary 
The overall goal of the project is to develop structured approaches to modeling complex gene 
regulation dynamics underlying cellular adaptation in mammalian systems. This involves 
integration of two erstwhile disjoint aspects: mathematical modeling and bioinformatics of high-
throughput biological data. As part of a structured approach to tackle this problem, we have 
developed methods and software tools for identification of 1) robust patterns of gene expression 
using a meta-clustering approach, 2) network structures from these patterns, 3) continuous-time 
regulatory network model based on temporally discrete gene expression data and predicted 
network structures. A web-based, graphical user interface was developed for the network 
structure prediction software, PAINT, and has been released as a DARPA BioSPICE module. 
We have successfully employed our structured approach in the study of various gene regulatory 
networks from in silico model systems, yeast cell cycle, neuronal differentiation and adaptation, 
circadian rhythms, and cellular response to pathogens. 
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2  Introduction 
Over the past decade, technological developments have resulted in rapidly growing public 
resources containing systematic data sets of various types: gene expression changes from 
microarrays; protein-DNA interaction and transcription factor (TF) activity data from protein 
binding assays, chromatin immunoprecipitation (ChIP) experiments (Wells and Farnham, 2002), 
and DNA footprinting (Kang et al., 2002; Ricci and El-Deiry, 2003); protein-protein interactions 
from two hybrid experiments and coimmunoprecipitation; and, genomic sequence, annotation 
and ontology information in public databases. The analysis of these large datasets holds the 
promise of identification of the nonlinear dynamic systems function of the interconnected gene 
and biochemical regulatory networks. 
 
Attempts at reverse engineering the gene regulatory networks from microarray data alone have 
met with varied success (Holstege et al., 1998; D’Haeseleer et al., 1999; Wessels et al., 2001; 
Ronen et al., 2002). Typically, all the genes are considered as potentially regulating all the other 
genes and the suboptimal and nonunique results are subsequently pruned either by setting 
thresholds on the quantitative parameters representing interaction strength or via constrained 
optimization (Yeung et al., 2002). Combining the available heterogeneous data types 
significantly improves the ability to unravel the regulatory networks (Tavazoie et al., 1999; 
Hughes et al., 2000; Zak et al., 2001; Hartemink et al., 2002; Ideker et al., 2002). The principal 
effect of incorporating additional data types apart from microarrays is to constrain the number of 
regulatory interactions per gene. Based on the known protein-DNA and protein-protein 
interactions, many interactions can be required to be present or specified to be nonexistent in the 
identification algorithm. This limits the number of interaction parameters to search for and 
renders the network identification algorithms tractable for a large number of genes (Zak et al., 
2001; Yueng et al., 2002). 
 
The biological mechanism of transcriptional regulation is by specific transcription factors (TFs) 
binding to the transcriptional regulatory elements (TREs) present in the cis-regulatory region 
(promoter) of the corresponding genes.  The binding is sequence specific and the binding sites 
are present on multiple genes. This results in an interconnected transcriptional regulatory 
network. Hence, the analysis of the promoters for the genes of interest for known and predicted 
TF binding sites will directly provide a good candidate set of network interactions (Hughes et al. 
2000; Hartemink et al. 2002; Ideker et al. 2002). This approach has been most successful in 
developing a detailed understanding of gene regulatory networks in yeast (Tavazoie et al., 1999; 
Ideker et al., 2001). The availability of genomic sequence combined with extensive information 
about TF binding site motifs has enabled system-wide analyses to unravel the gene regulatory 
networks that govern the response of yeast to a multitude of environmental perturbations 
(Tavozie et al., 1999; Ideker et al., 2001). Similar efforts are in progress in Drosophila (Berman 
et al., 2002), sea urchin (Davidson et al., 2002) and human systems (Elkon et al., 2003). 
 
In this context, the objective of the bioinformatics research efforts described here is to develop 
an automated and scalable bioinformatics approach to the identification and analysis of candidate 
regulatory interactions in a specific experimental setting. We have developed the Promoter 
Analysis and Interaction Network Tool (PAINT) for Transcriptional Regulatory Network 
Analysis (TRNA). Briefly, PAINT processes a list of unique identifiers representing the genes of 
interest and produces an interaction matrix that represents a candidate set of interactions between 
the transcription factors and the genes. This information can be subsequently employed in 
various network identification, analysis and visualization software. The objective is not to 
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develop another tool for sequence analysis, but to construct a modular and extensible platform 
into which various sequence analysis tools, network analysis and visualization software, and 
model identification tools can be 'plugged in'. In addition to the command line and the web-based 
interfaces (available at http://www.dbi.tju.edu/dbi/tools/paint), Early versions of PAINT modules 
were accessible as the 'agents' that communicate via Open Agent Architecture in the DARPA 
BioSPICE platform (http://www.biospice.org). Subsequently, PAINT has been available as a 
Dashboard module in BioSPICE. The details of this module are given in Section X. 
 
On the mathematical modeling end, the broad conceptual postulate that systems engineering 
techniques developed for complex chemical processes may be applicable to complex cell 
biological processes is very compelling.  However, a naïve, “direct” application of systems 
engineering techniques to biological problems of practical significance may be rendered virtually 
ineffective by fundamental differences between cell biology and chemical processes.  These 
differences and the problems they pose are illustrated in a case study below (Section 3.0) on 
modeling a gene regulatory network involved in the yeast cell cycle. Complete details of the case 
study are available in Zak et al., (2003).  We demonstrate how the biological essence complicates 
a straightforward “process modeling/identification” problem and subsequently recommend an 
alternative approach.  The approach—a middle ground between a direct, “off the shelf” 
application of systems engineering tools and a “one-at-a-time” ad-hoc development —
incorporates fundamental knowledge of the mechanisms and constraints intrinsic to biological  
systems. 
 
A schematic of the TRNA workflow is shown in the Figure 1. Deriving the regulatory structure 
from gene expression data is handled by PAINT, while predicting the regulatory activity based 
on the structure and the observed gene expression can be done using Network Component 
Analysis (NCA, Liao et al., 2003) or Karyote Genome Analyzer (KAGAN) tools on the 
BioSPICE Dashboard. 
 
The rest of the document is structured as follows: The problems underlying gene regulatory 
network modeling and a summary of the structured approach we have developed are presented in 
Section 3. Next, the details of the robust clustering of gene expression data are presented in 
Section 4. The details of the bioinformatics tool PAINT for network structure prediction are 
presented in Section 5. In Sections 4 and 5, the descriptions of the software and associated 
BioSPICE modules are followed by the details of their application in specific case studies. 
Section 6 presents a detailed structured approach incorporating all the above methods and 
demonstrates it in a yeast cell cycle case study where all the relevant system-wide data sets are 
available in one single biological system. 
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Figure 1: A schematic of the Transcriptional Regulatory Network Analysis workflow. 
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3 Modeling and Identification of Gene Regulatory Networks 
The objective of gene regulatory network identification is to enable the scientist to go beyond 
merely observing the qualitative changes in gene activities, and actually infer and quantify causal 
links between the genes that underlie physiological responses.  Computational models of these 
causal links between genes can provide system-wide understanding of the regulation that is 
fundamental to all life processes, and accelerate efforts in deciphering the structure of complex 
biological systems.  Ultimately, such models may be used for generating testable hypotheses 
about novel drug targets for prevention and treatment of complex diseases.   
 
Mathematically, the gene network identification problem may be formulated as the identification 
of the vector function f(⋅) and the estimation of the parameter vector p in Equation 1, given 
measurements of the expression levels (mRNA levels) over time, x(t), and the external input 
perturbations, v(t), that initiated this observed response: 
 
     dx/dt = f(x,v,p)        (1) 
 
From this formulation, the gene regulatory network identification problem appears to be a 
straightforward modeling/identification problem.  However, given the complexity of the 
biological processes Equation 1 describes, and given the technical issues associated with the 
measurement of gene expression, the problem is not so straightforward.   First is the issue of  
scale: the vector of expression levels x(t) at each sample point in time is of dimension Ng, where 
Ng is the number of genes in the genome of the organism being studied.  For yeast, Ng ~ 6,000, 
while for humans, Ng ~ 25,000, making Equation 1 several orders of magnitude larger in scale 
than what is typical for chemical process identification problems (for a database of typical 
system identification problems, see: http://www.esat.kuleuven.ac.be/sista/daisy (De Moor et al., 
1997)).  This issue of scale is further compounded as follows.  In standard chemical process 
identification, the process model is based entirely on x(t) and v(t) data.  However, for the 
biological systems considered presently, using only x(t) and v(t) data for system identification 
requires making allowance for all genes to interact with all genes, giving rise to a model with at 
least Ng×Ng parameters that must be estimated from data.   Of course, the fully connected 
network is not realistic because biological networks are known to be sparsely interconnected 
(Arnone and Davidson, 1997; Jeong et al., 2001; Ravasz et al., 2002) and thus the majority of the 
parameters will be zero.  The identification of Equation 1 is thus a problem in simultaneous 
structure and parameter identification on a scale that is extremely rare for chemical process 
systems.  Lastly are the data requirement issues.  The problems, associated with the quality and 
quantity of gene expression data, are extreme compared to what is typical with chemical process 
data.  With the current state of the art, each sample of x(t) is highly contaminated with noise 
(Nadon and Shoemaker, 2002; Sebastiani et al., 2003); furthermore,  because of the expense and 
difficulty in acquiring gene expression data, the number of time points Nm at which x(t) 
measurements are taken is relatively small (Nm << Ng).  Thus, from the classical process 
identification perspective, the gene regulation network identification problem has the following 
characteristics: 
1. It consists of a several thousand ordinary differential equations, 
2. with an unknown structure and with potentially millions of parameters, 
3. for which only a limited amount of relatively poor quality data is available.  

 
These issues of scale, simultaneous structure and parameter identification, and limited data 
quality and quantity make the gene regulatory network identification problem highly 
unconventional compared to the equivalent chemical process problem.  
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3.1 Unstructured Approaches 
In spite of the challenges outlined above, numerous approaches to the gene regulatory network 
identification problem have been reported in the literature, with the vast majority formulated as 
described above, depending only on x(t) and v(t) data (D’Haeseleer et al., 2000; Brazhnik et al., 
2002).  For reasons that will become clear later, we call these approaches unstructured.  The 
unstructured approach is shown schematically in Figure 2(a), where the objective is the 
identification of the function f(⋅) and parameter vector p that describe how the expression levels 
of the genes, x(t), depend on one another and the external inputs, v(t).  Every gene is allowed to 
interact with every other gene, resulting in at least Ng×Ng parameters to be estimated from 
Nm<<Ng measurements—a problem that is clearly unsolvable in this ill-posed form.  Using 
various dynamic model types (for example, linear discrete-time (D’Haeseleer et al., 1999; van 
Someren et al., 2000, Holter et al., 2001), linear continuous-time (Chen et al., 1999), and 
nonlinear discrete-time (Weaver et al., 1999)), each approach is characterized by the particular 
device employed to make the problem more tractable.  For example, D’Haeseleer et al. (1999) 
use nonlinear interpolation to increase the number of available data points, while Weaver et al. 
(1999) reduce the number of model parameters by repeatedly fixing small gene-gene interaction 
parameters at zero, and then re-estimating the parameters for the new constrained system.  Some 
avoid identifying interactions between thousands of genes by identifying instead interactions 
between only a handful of gene clusters (Van Someren et al., 2000) or by identifying interactions 
between composite modes derived from singular value decomposition (SVD) of the data (Holter 
et al., 2001).  Others add sparseness constraints to the network identification problem, selecting 
models that not only fit the data well, but do so with a minimal number of gene-gene interactions 
(Van Someren et al., 2001; Yeung et al., 2002).  Still others restrict the scope to steady-state 
system identification through ensembles of small perturbations and the assumption of local 
linearity, obtaining good results for simulated systems (Kholodenko et al., 2002; de la Fuente et 
al., 2002; Tegner et al., 2003) and also for a small, well-defined, experimental system (Gardner 
et al., 2003). 
 
These approaches are novel attempts at solving a very difficult problem, albeit with some 
questionable underlying assumptions.  For example, the biological significance of SVD gene 
modes regulating other SVD gene modes, or gene clusters regulating other gene clusters, is 
unclear.  While sparseness is an important attribute of any gene regulatory network model, it is 
not an ideal constraint because there is no guarantee that the sparsest network is the correct one.  
Furthermore, for systems of realistic scale, there is a combinatorially large number of sparse 
networks to evaluate.  The steady state approaches have the obvious drawback that network 
dynamics, which may be critical to physiology, are entirely neglected; they also suffer from the 
possibility that small perturbations from steady state may not be feasible for biological systems, 
where ultrasensitive all-or-nothing responses are common (Neves and Iyengar, 2002).  Finally, 
these steady state approaches are sensitive to the tradeoff between small perturbations, which are 
essential for the local linearity assumption to be valid, and measurement noise.  Nevertheless, 
these all represent creative attempts to identify complex systems from a small amount of data 
and limited prior information.  
 
 
3.2 A Structured Approach  
An intrinsically more tractable approach to gene regulatory network identification is obtained 
when additional domain knowledge is used to impose mechanistically justifiable structure on the 
identification problem.  For this structured approach, there are three levels of structure to 
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consider: 1) subcellular structure, 2) nuclear connectivity, and 3) dynamical model structure.  
Structural terms 1) and 2) are unique to the present approach and are discussed in the following 
paragraphs.  Use of dynamical model structure 3) in the present approach is analogous to other 
studies in which empirical dynamical relationships between system components are postulated 
and parameterized using experimental data. 
 
With the exception of dynamic regulation of mRNA stability (Wilusz et al., 2001), regulation of 
gene expression generally occurs through the regulation of transcription initiation (Fickett and 
Hatzigeorgiou, 1997).  Transcription initiation is itself regulated by transcription factors (TFs) 
that bind to transcriptional regulatory elements (TREs) - short sequences of DNA, 8-24 base 
pairs in length, in gene promoters where they influence the assembly of the preinitiation complex 
that initiates transcription.  It follows, therefore, that a reasonable first order approximation for 
the regulation of gene expression is through variation in the complement of active TFs that are 
present in the nucleus. 
 
Using this domain knowledge, we may first impose subcellular structure on f(x,v,p), shown  
schematically in Figure 2(b).  By subcellular structure, we mean that the overall model from 
Figure 2(a) has been decomposed into models of the nuclear and cytoplasmic subcellular 
compartments.  The nuclear model, g(u(t), x(t), pg), describes how the TFs (u(t)), not the entire 
complement of genes, regulate gene expression; the dependence on x(t) is an explicit direct 
proportionality for first order degradation reactions; and there are roughly Ng×(Nt+1) parameters, 
where Nt is the number of TFs in the system (Nt << Ng).  The cytoplasmic model, h(x(t), v(t), ph) 
(static or dynamic, depending on the available information) describes how the levels of active 
TFs (u(t)) depend on the expression levels of the genes (x(t)) and the external inputs (v(t)).  
Assuming that the TFs only need to be expressed to be active (true for developmental TFs, 
Brivanlou and Darnell, 2002), h(x(t), v(t), ph) relates levels of the TF mRNA to TF protein levels 
and is thus very simple, containing ~Nt parameters.  The nuclear model, containing many more 
parameters than the cytoplasmic model, determines the overall number of parameters in the gene 
regulatory network model after imposing subcellular structure, of order ~Ng×Nt.  For humans, Nt 
~3,000 (Brivanlou and Darnell, 2002), an order of magnitude less than Ng. Thus, by imposing a 
structure in which only variations in TF expression levels regulate gene expression, not 
variations in the expression levels of all genes, the number of parameters is reduced by an order 
of magnitude. 
 
Just as every gene does not regulate every other gene, neither does every TF regulate every gene, 
and it is thus possible to impose additional structure on the model in terms of nuclear 
connectivity.  Nuclear connectivity is defined in the present work as the specification of which 
genes are regulated by which TFs.  Prior knowledge of nuclear connectivity can significantly 
reduce the number of effective parameters in g(u(t), x(t), pg) (and thus the overall model) to 
roughly Ng×Nb, where Nb is the average number of TFs regulating each gene.  Nb is estimated to 
be of order ~10 for eukaryotes (Arnone and Davidson, 1997).  The net effect is an additional 
reduction of up to two orders of magnitude in the number of parameters to be estimated, thereby 
rendering the gene regulatory network identification problem even more tractable for modestly 
sized data sets. 
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Figure 2: Unstructured and structured approaches to gene regulatory network identification (a) 
Unstructured approach:  In this modeling approach, every gene is allowed to regulate every other 
gene directly or indirectly, with the assumption that analysis will reveal the significant interactions.  
There are effectively Ng × Ng parameters or interconnections that must be evaluated, where Ng is the 
number of genes in the system.  (b) Structured approach, subcellular structure: In this approach, prior 
knowledge regarding which genes are transcription factors (TFs) is used to formulate two separate 
models: (1) A nuclear model that describes how the transcription rate of a specific gene depends on the 
activity of the TFs, and (2) a cytoplasmic model that describes how the activation of specific TFs 
depends on the expression levels of the genes and external perturbations.  This reduces the number of 
parameters by an order of magnitude as compared to the unstructured approach. (c) Structured 
approach, nuclear connectivity: Additional structure is imposed on the nuclear model by specifying 
which genes are regulated by which TFs, reducing the number of model parameters further by up to 
two orders of magnitude. 
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While the structured approach can simplify the gene regulatory network identification problem 
considerably, it also facilitates the inclusion of additional biological complexities when they are 
known à priori.  For example, if the TFs are of the signaling type, being activated in a complex 
manner by external inputs (v(t)) and the existing complement of proteins within the cell 
(Brivanlou and Darnell, 2002), this will be reflected by increasing the complexity in h(x(t), v(t), 
ph) accordingly.  Similarly, if the transcription rates of some genes depend in a complex manner 
on the activities of multiple TFs, g(u(t), x(t), pg) will increase commensurately in complexity.  
The structured approach also makes it possible to identify which particular assumptions have 
been violated when the models do not adequately describe the data.  Note that in the unstructured 
approach, there is no easy way to include additional complexity or to check for violated 
assumptions because there are no elements in the framework that reflect the underlying 
biological mechanisms.  
 
3.3 Data Quantity and Quality 
Data quantity and quality are critical issues in model identification in general, but are even more 
critical for the identification of gene regulatory networks and biological systems overall.  At the 
molecular level, biological systems are more complex and of higher dimensionality (and hence 
larger in overall problem scale) than chemical process systems, and therefore require more, not 
less, data for effective modeling and identification.  It is difficult, however, to obtain data from 
biological systems in amounts that are comparable to what is possible with chemical process 
systems.  Gene expression profile time courses, for example, consist of far fewer time points and 
have significantly more noise corruption (Nadon and Shoemaker, 2002; Sebastiani et al., 2003) 
than typical dynamic chemical process data. Additionally, perturbations that are routinely 
implemented on chemical process systems to excite rich dynamic frequencies, such as pseudo-
random binary sequences, or the deliberate small amplitude perturbations for exciting only local 
linear modes, are far more difficult to implement in biological systems, where only dynamically 
simplistic perturbations (steps and pulses, for example) are generally applied.  Nevertheless, the 
type of perturbation that is used to excite a biological system plays an important role on in how 
well the underlying gene regulatory network may be identified (Zak et al., 2003a).  The 
structured approach to gene regulatory network modeling, by incorporating biological domain 
knowledge and permitting the use of a variety of genomic data types, requires the identification 
of significantly fewer parameters, and is therefore less sensitive to the quality and quantity of 
gene expression measurements for a given input perturbation.  This reduced dependence on 
measurements of gene expression, however, comes at the cost of dependence on data of different 
types, which introduces into the modeling and identification process another set of challenges 
and idiosyncrasies unique to each.   
 
Fortunately, gene regulatory network modeling does not occur in a vacuum.  Genomic sequences 
of nearly all model organisms, and many additional organisms, are available in public databases 
(Baxevanis, 2003).  Additionally, functional annotation of the genome sequences is underway 
(Ashburner et al., 2000; Camon et al., 2003).  Functional annotation can specify which genes are 
TFs, and thus play a role in defining subcellular structure.  Finally, the number of tools for 
predicting promoter regions from genomic sequences (Fickett and Hatzigeorgiou, 1997) and 
predicting TREs within promoters (Quandt et al., 1995; Liu et al., 2001; Kel et al., 2003) 
continue to multiply; databases of TREs continue to grow (Matys et al., 2003); and tools that 
integrate these data in an automated fashion have been developed (Vadigepalli et al., 2003).   
These tools, which involve predicting TREs in the promoters of specific genes, play a key role in 
determining nuclear connectivity.  In short, for any organism that is likely to be of interest, the 
means to acquire the suggested prior knowledge already exist, and although it may not be 
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possible to obtain complete knowledge of nuclear connectivity, what can be obtained will allow 
significantly more traction on the gene regulatory network identification problem than is possible 
by using gene expression data alone.   
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4 A Novel Meta-Clustering Algorithm to Combine the Results from Different 
Clustering Techniques  
Clustering analysis is an important tool to investigate and interpret data. However, there is no 
perfect clustering approach outperforming its counterparts, and the performance of a clustering 
method can vary significantly across datasets. Therefore, it is risky to analyze the data based on 
one particular algorithm. This risk can be alleviated by employing several different clustering 
approaches, but the challenge then is how to extract a clear picture of the data structure from this 
clustering ensemble. This paper addresses this challenge by proposing a novel meta-clustering 
approach to combine different candidate partitionings into one single hierarchical clustering 
structure. In this framework, different sections of the clustering structures of the candidate 
partitionings are weighted differently according to how well they reflect the underlying structure 
of the original data. This is achieved by the calculation, for each candidate partitioning, of a 
novel distance matrix, defined on the basis of the given clustering structure and the original data 
distribution. Then, the distance matrices are combined to produce a new clustering structure that 
provides a better interpretation on the data distribution of interest. Simulations with artificial and 
real data show that the proposed approach is able to extract the information efficiently and 
accurately from the input clustering structures. 
 
4.1 Meta-clustering algorithm 
As shown in Figure 3, there are three steps in the proposed algorithm. The first step is called 
alignment. In this step, we transform each candidate partitioning into a format (matrix of cluster-
based distances, Dc) that is independent of the given clustering structure. Specifically, entry (i,j) 
of matrix Dc represents the distance between the vectors providing the probability that the data 
points i and j belong to every defined cluster in the given partitioning (i.e., the distance between 
the vectors of soft membership for data points i and j).  
 
The consistent format of the Dc matrices facilitates the integration process in the combination 
step, which consists on the average of the Dc matrices of all the candidate partionings. The 
underlying assumption of this scheme is that data points belonging (nonbelonging) to a natural 
existing cluster have a low (high) cluster-based distance in all the candidate Dc matrices, while 
only dubious cases will get intermediate values of the cluster-based distance in some Dc matrices. 
This attractive property of the cluster-based distance is a consequence of the use of the original 
data attributes in its calculation.  
 
Finally, in the reclustering step, the proposed algorithm extracts a hierarchical clustering 
structure from the average Dc matrix obtained in the combination step. After the reclustering 
step, we obtain a hierarchy of clustering structures. If the desired number of clusters is known, 
we can use this knowledge to pick up the corresponding partition from the resulting tree. On the 
other hand, the merging cost at each step provides hints for selecting this number.  
 
4.2 Experimental results 
To simplify the discussion, we first assume that the desired number of clusters is known. All the 
clustering approaches have been applied on six datasets, which include three artificial datasets, 
two machine learning benchmark datasets (iris and wine datasets) and one dataset collected from 
a biological application (the expression level of 800 cell cycle related genes in budding yeast 
Saccharomyces cerevisiae measured during different cell-cycle stages and categorized into four 
different functional groups: chromatin structure, glycolisis, protein degradation, and spindle 
pole). The datasets are selected so that the desired partitioning for each dataset is known. This 
external information provides a “golden” rule for the evaluation of the clustering results. 
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Specifically, we use the Rand index to measure the difference between an obtained clustering 
structure and the desired partitioning. The Rand index is computed by examining all pairs of data 
elements in the dataset after clustering. If two data elements belong to the same cluster in both 
the desired partitioning and the obtained clustering structure, this counts as an agreement. If two 
data elements are in different clusters in both the desired partitioning and the obtained clustering 
structure, this is also an agreement. Otherwise, there is a disagreement. The Rand index is 
computed by dividing the number of agreements by the sum of agreements and disagreements. 
Thus, it is a measure of how closely a clustering result matches the desired partitioning (that is, it 
is a measure of clustering accuracy). The value of the Rand index falls in the interval [0, 1], with 
1 representing a clustering result that perfectly matches the desired partitioning. 

 
Figure 3: Meta-clustering approach to combine different clustering results. 
 
Table 1 shows the values of the Rand index for different clustering results on the six datasets. 
For each dataset, the clustering results are divided into four groups: the group of candidate 
clustering structures, the clustering selector group (where each selector chooses a candidate 
clustering according to a cluster validation index), the group of previously existing clustering 
ensemble techniques (HGPA, CSPA, and MCLA), and finally the proposed meta-clustering 
algorithm. As shown in the table, for the first two datasets the desired clustering results are 
obtained by one of the candidate approaches (SOM for the first dataset and linkage for the 
second). In these two cases, the CSPA and the proposed meta-clustering approaches are both 
able to extract the correct partitioning among all the candidates. For the other four datasets, there 
is no candidate partitioning reflecting the desired grouping perfectly. As shown, the results 
provided by the meta-clustering method on all these datasets are better than any of the 
candidates. Moreover, the proposed approach outperforms all the other methods, except for the 
MCLA approach in the last dataset, which produces exactly the same result. 
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 Table 1. Performance of all the methods considered here when applied on the six datasets  
 Test1 Test2 Test3 Iris Wine Yeast 
K-means 0.5 0.5501 0.8432 0.8805 0.9125 0.9063 
SOM 1 0.5347 0.8564 0.7805 0.9467 0.9479 
Linkage 0.5 1 0.3500 0.8930 0.7202 0.8414 
Selector 
(DB-index) 0.5 0.5501 0.8564 0.8805 0.9467 0.8414 

Selector 
(Silhouette 
index) 

0.5 0.5501 0.8432 0.8930 0.9125 0.9479 

HGPA 0.5 0.5 0.5527 0.7857 0.5898 0.8064 
CSPA 1 1 0.8470 0.8632 0.8528 0.8457 
MCLA 0.6043 0.6860 0.9173 0.8805 0.9125 0.9815 
Meta-clustering 1 1 0.9301 0.8995 0.9623 0.9815 

  
We now discuss how to decide the number of clusters in the proposed meta-clustering approach. 
As described before, the last step of the proposed algorithm is an agglomerative hierarchical 
clustering. Therefore, independently of the clustering techniques used as candidate inputs, the 
meta-clustering approach always provides a dendrogram that groups the data elements into 
different number of clusters in a hierarchical way. The merging cost values reflect the structural 
change in the clusters obtained in each step, and they can be used to estimate the number of 
clusters: Merging in the single linkage algorithm can be stopped when the merging cost presents 
a sudden large increase with respect to previous merging costs. Provided that the inherent classes 
are well separated, this method can detect the optimal number of clusters accurately.  
 
Figure 4 shows the dendrograms produced by the proposed approach when applied on the six 
datasets introduced before. Notice that the merging cost in the first dataset stays low until the 
number of the clusters reaches two. Then, the last merging has a cost much larger than before, 
which indicates that the desired number of clusters is two (which agrees with the desired result). 
As shown in Figure 4(b-e), similar results can be found for the other two artificial datasets and 
for the two machine-learning benchmark datasets, where the desired numbers of clusters are 
correctly suggested in the proposed meta-clustering approach by considering the jumps in the 
merging cost. 
 
One exception in the relationship between merging costs and number of clusters can be found in 
the result from the yeast data, which suggests eight clusters instead of four clusters, as shown in 
Figure 4(f). This occurs because there are two classes that are separated (each) into more than 
one cluster. For instance, the class “Glycolysis” is divided into four clusters. The reason is that 
all the candidates failed to group the profiles in this function class together in one single cluster.  
Therefore, although in the next three steps of the meta-clustering these four clusters are correctly 
merged together (results not shown), the merging costs are pretty high, which means that there is 
little support for these mergings from the candidate clustering results. This example shows that 
the number of clusters estimated by the proposed meta-clustering method is heavily dependent 
on the quality of the input. 
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Figure 4: Dendrograms produced by the meta-clustering approach on the six datasets, where the 
suggested partitioning in each dendrogram is marked by a dashed line.  (a) From artificial dataset 
test1; (b) from artificial dataset test2; (c) from artificial dataset test3; (d) from the iris dataset; (e) 
from the wine recognition dataset; (f) from the yeast dataset. 
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5 PAINT: Promoter Analysis and Interaction Network Toolset for gene regulatory 
network structure prediction 
 
5.1 PAINT Architecture 
The modular architecture of PAINT is not organism-specific. The key requirements are the 
availability of annotated genome sequence and information on transcription factor binding site 
motifs. PAINT 3.3 can conduct analysis specific to the mouse, human and rat. The toolset is 
constituted of the following four components: 
 
1. Preprocessor: A Perl module that builds the PAINT promoter database based on Ensembl 

and Unigene annotation that can be queried using the Ensembl GeneID, Locus Link, Unigene 
ClusterID or Clone ID (GenBank accession number). This allows for faster processing at 
runtime in fetching the promoter sequences. 

2. Upstreamer: A Perl module that provides the functionality of sequence retrieval from the 
UpstreamDB database given a list of unique identifiers for the genes of interest. 

3. TFRetriever: A Perl module that processes the retrieved sequences through the transcription 
factor inspection/discovery programs. The dynamic nature of the databases containing 
transcription factor information and user-specified parameter options require online retrieval 
rather than an offline processing for all the promoters in UpstreamDB. 

4. Analysis and Visualization: A Perl and R module that contains functions for analysis and 
visualization of CIM. A matrix image with optional clustering of data and a network layout 
diagram are available. Also, produced are various file formats: SBML and GraphML for use 
in JDesigner (Hucka et al., 2001), Cluster/TreeView (Eisen et al., 1998), Pajek (Batagelj & 
Mrvar, 1998) and Cytoscape (Ideker et al., 2002). These can be used in the subsequent 
network analysis and visualization. 

 
The modular architecture of PAINT is depicted in Figure 5. A detailed description of each of the 
modules and the input-output relationships is presented next. A discussion of the issues involved 
and specific choices made in the tool development is presented in the Discussion section. 
 

 
 
 

Figure 5:  A schematic of the PAINT 
workflow indicating the data types on one 
side and the resources used on the other. 
The resources can either be local or 
accessed on the network. The input and 
output data formats are usually text-based 
so as to allow processing by other tools 
and spreadsheet-like software if necessary. 
This modular architecture makes it easy to 
plug in updated/new modules as well as 
interact with external utilities. 
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5.2 PAINT Modules 
The UpstreamDB module. For an organism of interest, the principal requirement for 
constructing the promoter database is annotated genome sequence assembly. Several genome 
assemblies are available for mammalian systems, for example, Ensembl (Hubbard et al., 2002), 
Santa Cruz (http://genome.ucsc.edu), Celera (http://www.celera.com). The UpstreamDB 
database was constructed for all the annotated genes (known and putative) in the Ensembl 
genome database for Mus Musculus. For each gene, 5,000 base pairs (bp) upstream (5’ to the 
gene), the first exon of the open reading frame (ORF), and 100 base pairs downstream (3’ to the 
end of first exon) were retrieved from the genome and placed in a temporary database (TempDB) 
prior to the identification of the Transcription Start Sites (TSS). In the case of genes for which 
upstream sequence of length 5,000 bp is not available in the genome database (due to assembly 
being incomplete), the maximum available sequence was retrieved. The retrieved sequence was 
placed in the database only if at least 300 bp sequences immediately 5’ to the gene were 
available. The genome database contains sequences in 5’ to 3’ orientation on a single strand 
(conventionally denoted as +1) of DNA. For the genes that are located on the strand –1, the 
sequence from the genome database was reversed and complementary base pairs were computed 
to produce the upstream sequences. 
 
The key aspect of the analysis is using the correct sequence to represent the cis-regulatory 
control regions. Note that this requires information about the 5’ untranslated region (UTR) of 
each gene in order to correctly identify the TSS and hence the corresponding cis-regulatory 
control region for each gene. The first exon of a gene as annotated in the Ensembl database does 
not necessarily correspond to the TSS (Davuluri et al., 2001). This creates difficulty in 
identifying and retrieving the appropriate sequence data corresponding to the cis-regulatory 
region for the genes of interest. A sequence-driven approach can be employed for computing the 
TSS of a given gene by alignment with corresponding expressed sequence data, for example, 
EST sequence (dbEST) or cDNA sequence (from GenBank). Of particular interest to the mouse 
model system is the effort designed to provide 5’ end data for mRNAs (RIKEN clone sequences: 
Kawai et al., 2001). These clone sequences were aligned to the gene upstream sequence in the 
TempDB to estimate the TSS for each gene. The sequence alignment program Megablast was 
used with option '-W48' to use a word size of 52 in alignment. For each gene, the corresponding 
alignments were filtered by the following criteria: 
 
1. The alignment should have less than 3 mismatches. 
2. The alignment should be closest to the 5' end of the aligned clone sequences. 
3. If 5' ends of multiple clones align well, then the alignment that is 5' most on the gene 

upstream sequence is selected. 
 
The position on the gene upstream sequence that is marked by the above alignment and filtering 
was considered to be the estimated TSS. Using this procedure, an estimate of the TSS's for 5040 
genes was obtained. For the remaining genes, a TSS prediction tool Eponine (Reference 
servlet.sanger.ac.uk:8080/eponine) was employed to come up with an estimate of TSS within the 
5000 bp 5' from the start of the ORF. The TSS's for 2278 genes were identified in this manner. 
For the remaining 14,045 genes, the start of the ORF was considered as the TSS. After the TSS's 
for genes are estimated for each gene, an updated upstream sequence of 2,000 bp 5' to the 
estimated TSS was retrieved and stored in the UpstreamDB database. 
 
In addition to the promoter sequence for each gene, UpstreamDB also contains the cross 
reference tables that enable retrieval of promoters using Unigene ClusterID, LocusLink, and the 
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cDNA clone Accession number. This cross reference was constructed using information from the 
Unigene database. This allows for convenient retrieval of the promoter sequences directly from a 
list of genes marked as significantly varying in expression by the microarray analysis software or 
other gene expression analysis methods. 
 
The Upstreamer module contains Perl functions that can be wrapped for inclusion in UNIX 
shell scripts, Perl scripts, web-based scripts such as PHP, and Open Agent Architecture (for use 
as a BioSPICE module). The input from the user is a list of identifiers for the genes of interest 
and the number of base pairs of the upstream sequence needed for analysis. The length count is 
from the start of the gene toward the upstream (5’) end. However, the retrieved sequence is 
written from 5’ to 3’ direction as per convention. The output of the module is the upstream 
sequences of specified length for the genes that are referenced in the UpstreamDB database. The 
output is in FASTA format for further processing by transcription binding motif 
inspection/discovery software. 
 
The TFRetriever module is envisaged to contain several sub-modules that can communicate 
with various local and web-based motif inspection and discovery software such as MatInspector 
(Quandt et al., 1995) and MEME (Bailey et al., 1994). A motif is a characteristic sequence of a 
binding site and functionally similar motifs are grouped together into families. The set of 
vertebrate transcription factor families is utilized for promoter inspection. The output of the 
TFRetriever module is the output from the motif discovery program for each input sequence list. 
PAINT until v2.3 (as used in the case studies 1 and 2 below) contained the sub-module for 
interacting with MatInspector software. The current version PAINT 3.3 (as of January 2006) 
contains only the sub-module for interacting with MATCH software (Kel et al., 2003), in 
conjunction with either TRANSFAC Professional or TRANSFAC Public versions (Matys el a., 
2003). This is the version currently supported on the Dashboard 6.0 used in case studies 3 and 4. 
 
At present, FeasNetBuilder, a submodule of the TFRetriever, can process the output from 
MATCH to construct an interaction matrix representing a candidate set of connections in the 
regulatory network based on the promoter sequence and TF/TRE information. In the set of 
promoter sequences processed, the complete list of TREs was generated. The columns of the 
interaction matrix correspond to the TREs and each row corresponds to a gene from the input 
list. If the parameter for binary counting is set in PAINT, the regulation of a gene is represented 
by a 1 if the corresponding TRE is present on the promoter for that gene, and by a 0 otherwise. 
This matrix represents the constraints to a network identification scheme.  The interaction 
parameters corresponding to zeros in the candidate matrix need not be computed, substantially 
reducing the dimensionality of the identification problem. If the parameter for binary counting is 
not set, each element of the CIM will be equal to the number of corresponding TREs found on 
the respective promoter.  
 
The FeasnetBuilder module contains a submodule named StatFilter that computes p-values for 
the over-representation of the TREs in the set of promoters considered with respect to a 
background set of promoters.  Specifically, the p-values give the probability that the observed 
counts for the TREs in the set of promoters could be explained by random occurrence in the 
background set of promoters. The p-values are calculated using the hypergeometric distribution 
(Bury, 1999; Jakt et al., 2001; Elkon et al., 2003).  Typically, the reference set is that of the genes 
on the microarray utilized in the experiments. For each TRE V$X, given (1) a reference CIM of 
n promoters of which l promoters contain V$X and (2) a CIM of interest with m promoters of 
which h contain V$X, the associated p-value for over-representation is given as equation 2: 
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      (2) 
 
            
The p-value for under representation of a TRE in the observed CIM is calculated similarly with 
the summation in the above equation going from 1 to m. These estimates of significance can be 
utilized in filtering for those TREs that meet a threshold (say, p < 0.1) to identify most likely 
regulators of the genes considered in the experimental context of interest. For the case studies 
presented here, the CIM corresponding to the ~3200 annotated cDNA clones on the microarray 
utilized for experiments was considered as the reference CIM. Given no information about the 
source of the genes from which the input list to PAINT is generated, PAINT can optionally 
utilize the CIM corresponding to all the genes in the UpstreamDB database as a reference CIM. 
 
The Analysis and Visualization module contains various functions for the visualization and 
analysis of the CIM. An image of the interaction matrix is produced in which the individual 
elements of the matrix are represented by a color based on the significance values for that 
particular TRE (p-values for over-representation in the observed CIM). This module also 
contains functionality for hierarchical clustering using 'R' software for statistical analysis 
(http://www.r-project.org). For clustering, the pair-wise distance that is most appropriate for the 
CIM data is the binary distance. The binary distance between two genes (or TFs) can be 
computed as the ratio of number of elements for which the two rows (or columns) are dissimilar 
to the total number of elements for which either of the rows contains a 1. For the genes, binary 
distance is the dissimilarity between the regulatory patterns of two genes as related to the total 
number of distinct binding sites present on either of them. For the TFs, binary distance is the 
dissimilarity between the regulatory patterns of two TFs as related to the total number of genes 
either of the TFs can regulate. In PAINT, the clustered data can be visualized as a matrix layout 
with the hierarchical tree structure aligned to the rows and the columns of the CIM. The zeros in 
the matrix are shown in black and the non-zero entries in the CIM are colored based on the p-
value of the corresponding TRE. The brightest shade of red represents low p-value (most 
significantly over represented in the CIM). Conversely, the brightest shades of cyan represent 
smaller p-values for under representation in the observed CIM indicating more significantly 
under represented TREs. This image can optionally represent the cluster index of each gene, 
where such cluster indices are generated from other sources such as expression or annotation-
based clustering. With such visualization, it is straightforward to explore the relationship 
between expression/annotation-based clusters and those based on cis-regulatory pattern (i.e., 
CIM). The Analysis and Visualization module can also generate histograms of the network 
connectivity from the CIM to provide additional insights into the regulatory network of interest. 
A histogram of the sum of all columns in the CIM provides the distribution of the number (or 
fraction) of TREs that can regulate a given gene.  This distribution is typically uni-modal with 
long tails indicating that very few genes are regulated by very few or very many TREs. 
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Similarly, a histogram of sum of all the rows in CIM provides the distribution of number (or 
fraction) of genes that are regulated by a TRE. Typically, this distribution is monotonically 
decreasing indicating that most of the TREs are present on few genes each (fine-tuned 
regulation) and relatively few TREs are present on large number of genes (system-wide effects). 
The Analysis and Visualization module can also generate a network layout diagram using the 
GraphViz libraries (available at http://www.research.att.com/sw/tools/graphviz/). 
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6 BioSPICE Software: TJU Contributed Modules 
In this section we present a detailed description of the BioSPICE modules developed for gene 
regulatory network analysis. Some of the modules presented here were supported in Dashboard 
version earlier than 6.0, and were later subsumed by a completely reworked PAINT module. 
However, descriptions of the currently unsupported modules are also included here to present the 
major software development efforts for the entire duration of the project. The details of the 
current PAINT module are presented after the description of previous versions of the tools. 
 
 
BIOSPICE Software module contribution (February 2004) 
6.1 MetaCluster Toolbox 
Input: Microarray expression data (Timeseries format). 
Output: Cluster membership for each identifier (SBML2). 
 
A diverse supply of clustering algorithms 
are available for data analysis, all of which 
generate results which are specific to the 
algorithm used or even to the individual 
iteration. MetaCluster was developed to 
help biologists mine several different 
clustering results for those data 
relationship insensitive to the clustering 
methods used. MetaCluster provides a 
computational tool which co-analyses 
diverse clustering results to highlight the 
relationships that are stable across 
algorithms. These method-independent co-
clustering results provide the strongest 
evidence for biological significance. The 
MetaCluster Toolbox included in this 
Dashboard contribution features a GUI 
that takes Timeseries as input (such as 
microarray expression data), allows the 
user to cluster the data interactively, and 
produces a SBML2 output of the clustering 
results.  
 
On the Dashboard, MetaCluster Toolbox starts up the GUI as shown in Fig 6, with the data 
obtained from the workflow in the Timeseries format. Currently, the MetaCluster Toolbox 
implements the clustering algorithms as shown in the Figure 6. The user can choose any of the 
clustering algorithms, and specify the number of clusters expected. Each choice of clustering 
opens a new tabbed pane of clustering results as shown in the Figure 6. Using MetaCluster 
algorithm requires at least two clustering results. If the user selects Meta-clustering from the 
Clustering Tools menu, the MetaCluster Options dialog box is presented as shown in the Figure 
6. This way, the user can continue with clustering the data with different algorithms/options until 
a satisfactory result is obtained. After a reasonable clustering result is obtained, the user may 
choose to quit the MetaCluster Toolbox and pass on the clustering results to the next component 
in the workflow. To do this, the specific tabbed pane in which desired results are present has to 
be selected (for example, C_4 in the Figure 6). At this point, choosing Output to SBML2 and 

Figure 6: Merging of multiple clustering results 
(for robust clustering of gene expression data) 
provided by MetaCluster Toolbox. 
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Quit option from the File menu quits the MetaCluster Toolbox, and sends the clustering results 
out. Please note that closing the MetaCluster Toolbox window forcibly does not send out the 
clustering results, and may result in abnormal termination of the workflow. The cluster 
information is stored in the <annotation> node of the <species>, where species is the gene 
identifier from the Timeseries data. Within the annotation, the value attribute in <dbi:user-def 
name="metacluster"> indicates the cluster membership. Please refer to the sample output file 
below for specific details. 
 
6.2 CloneUpdater 
Input: Gene list, with optional annotation (SBML2). 
Output: Gene list, with new/updated annotation (SBML2). 
 
Gene annotation is one of the most 
important data classes used in the post-
genomic era. CloneUpdater provides the 
biologist an easy to use path to the most "up 
to date" annotation of genes and associated 
reagents such as EST clones. It is 
compatible with many different types of 
identifiers and provides a large number of 
options for updating preexisting annotations 
or adding new annotations to user-provided 
identifiers from many different databases 
including UniGene, LocusLink, RefSeq, 
and more. Processing more than 50 
identifiers per second, CloneUpdater is fast 
enough to be used for one gene identifier or 
tens of thousands. In addition, 
CloneUpdater has the important ability to 
find identifiers that represent the same gene 
and thereby highlight redundancies in large 
reagent collections. In the context of 
analyzing gene regulatory networks, 
CloneUpdater can be used as a preprocessor 
for PAINT: it can eliminate redundant 
clones, and update annotations that PAINT can process. This Dashboard release of CloneUpdater 
features a GUI that offers the same features as the online version located at: 
http://www.dbi.tju.edu/cloneupdater. 
 
CloneUpdater starts up with the GUI as shown in Figure 7. By this point, the SBML2 input is 
parsed for existing annotation, if any. The next step is to choose the organism (to which the 
clones belong to) using the Choose an Organism drop down list in the main window (Figure 
7(a)). At this point, the user is presented with the option of fetching more annotation information 
(from UniGene database) for the selected clones, using the Add New Headers button. The user is 
expected to enter the number of desired new annotation elements in the box provided, and then 
click the Add New Headers. The drop down list in the Define New Headers dialog box lets the 
user choose desired annotation information for each of the clones in the list. After the desired 
annotation is chosen, clicking on the Continue button submits the request for processing. It takes 
about 3 seconds to process a list of 30 clones. A drop down list lets the user to select All Clones, 

Figure 7: Updated clone annotation data (based on 
latest UniGene release) provided by CloneUpdater. 
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Distinct Clones (default), Redundant Clones or Clones not in UniGene to be sent to the next 
component in the Dashboard workflow. Clicking the Output to SBML2 and Quit button quits 
CloneUpdater and transfers the control to the Dashboard. In the output file, for each of the 
<species>, <annotation> tags are added or updated as specified. 
  
6.3 Promoter Analysis and Interactive Network Toolset (PAINT) 
PAINT was developed to provide the biologist a computational tool to integrate functional 
genomics data, for example from microarray-based gene expression analysis, with genomic 
sequence data to carry out transcriptional regulatory network analysis (TRNA). TRNA combines 
bioinformatics, used to identify and analyze gene regulatory regions, and statistical significance 
testing, used to rank the likelihood of the involvement of individual transcription factors, with 
visualization tools to identify transcription factors likely to play a role in the biology under study. 
In addition this tool can output results in several different formats for use with modeling and 
simulation tools. The project is conceived and implemented as an automated modular scalable, 
extensible, integrative framework of software tools. PAINT's modular architecture, in 
combination with BioSPICE's Dashboard and OAA framework, allows a biologist to take 
advantage of the existing, as well as future BioSPICE Agents. PAINT is also available online at: 
http://www.dbi.tju.edu/dbi/tools/paint 
The Dashboard release of PAINT (as of February 2004) consists of the following modules:  
1) PAINT Feasnetbuilder: Takes an annotated gene list in SBML2 format and produces an output 
of genes and Transcriptional Regulatory Elements interaction. 
2) Feasnet Adapter: Converts genes and TREs interaction in SBML2 format to Feasnet Object 
that can be used by PAINT 
FeasnetViewer. 
3) PAINT FeasnetViewer: Takes a 
Feasnet Object of interest, and 
optionally a reference Feasnet to 
analyze the relative significance of 
TRE occurrence in the gene list of 
interest against the given reference. 
The module has a visualization 
component, and an output to the 
PtPlot module. 
 
PAINT FeasnetBuilder:  
Input: Annotated gene list (SBML2). 
Output: Gene-TF interaction data 
(SBML2). 
PAINT Feasnet Builder starts up with 
the GUI as shown in the Figure 8, 
with the clone list received from the 
workflow. PAINT currently maintains 
a promoter database for Mouse, 
Human and Rat. In the Organism 
select box, the user is expected to 
choose the organism to which the 
input clones belong to. This module 
uses TRANSFAC Professional by 
Cognia Corporation to find known 

Figure 8: Promoter sequences gathered and 
construction of a Candidate Interaction Matrix 
(CIM) based on the TREs present on the sequences 
are provided by the PAINT Feasnet Builder. 
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TREs. The user is expected to be registered with Cognia.com to be able to use the BIOBASE 
Match. For our example, we chose an Upstream Length of 500 basepairs, and Core similarity 
threshold of 0.9. Clicking on the Send Request button posts the request to the web-based PAINT. 
This process takes about 30-40 seconds to complete. The Output to SBML2 and Quit button is 
activated as soon as the processing is complete. Clicking this button closes PAINT Feasnet 
Builder and sends the gene-Transcription Factor data to the downstream module on the 
Dashboard. In the output, each TRE on a gene is represented as a <reaction>, with Transcription 
Factor in the <listOfReactants>, and gene identifier in the <listOfProducts>. 
 
PAINT Feasnet Adapter:  
Input: Gene-TF interaction data (SBML2). 
Output: Gene-TF interaction data (Feasnet Object). 
Feasnet Adapter module converts gene-TF interaction in SBML2 format to Feasnet format that 
the Feasnet Viewer module can use. This operation doesn't require any user interaction. 
 
PAINT Feasnet Viewer:  
Input: Gene-TF interaction data of gene list (Feasnet), Gene-TF interaction data of reference 
(Feasnet) (optional), and clustering information of gene list (SBML2) (optional). 
Output: TRE over-representation/under-representation, relative to the specified reference 
(PlotML). 
Feasnet Viewer module is the analysis and visualization component of the PAINT. Currently, the 
module can: 
1) Analyze the significance of the TREs present-TRE over/under representation-for each cluster 
in the gene list, relative to a reference (such as all the genes in a microarray experiment, or entire 
genome). 
2) Display the Gene-TF interaction as a "matrix". 
3) Export the five most significantly over-represented or most significantly under-represented 
TREs across all the clusters. 
 
Feasnet Viewer starts up with the GUI as shown in the Figure 9. Clicking the View Feasnet 
image button computes analytical p-values for each TRE occurrence on the given genes relative 
to the specified reference, and displays the image in a tabbed pane as shown in the Figure 9. For 
these significance values to be meaningful, note that the intended reference gene list should also 
use the same parameters for finding TRE occurrence as the desired gene list.  
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In the Feasnet image, each "dot" indicates the presence of the specific TRE (along columns) on 
the promoter of the given gene (along rows). Over representation is indicated by different shades 
of red (the brighter the red color, the greater the TRE is over represented), and under 
representation by cyan. The gray shades mean that the TRE occurrence in this gene cluster is not 
significantly different from a randomly picked gene cluster. The colored bar to the left of the 
gene identifiers indicates the cluster membership (generated from MetaCluster Toolbox). After 
the image is generated, clicking on Export to PtPlot button prepares the statistics of five most 
over/under represented TREs across all the gene clusters. Closing the window sends the PlotML 
data to the next component (typically, PtPlot module) on the Dashboard. Typically, the 
significance of a TRE varies across the gene clusters. Figure 10 shows the significance score (log 
scale of probabilities) of over/under-represented TREs across all the gene clusters. A positive 
value in the plot indicates over-representation, and negative value indicates under-representation. 
For example, the TRE COREBINDINGFACTOR_Q6 (blue color bars) is significantly over-
represented in cluster 3 (significance score ~1.5), compared to the other two clusters 
(significance scores < 0). An example TRNA workflow is shown in Figure 11. 

Figure 9: PAINT FeasnetViewer: visualization of the TRE occurrence on the promoter 
sequences of genes are color coded based on statistical significance. Gene Identifiers are 
indicated by row labels on the right hand side and the TRE Identifiers are indicated by column 
labels on the top. Clusters containing each gene are also shown (left of the row labels). 
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6.4 Updated PAINT Module (since June 2005) 
This PAINT module release features a complete reworking of PAINT with improved UI, and the 
underlying framework (Figure 12). Currently, PAINT runs on Linux, Windows and Mac OSX, 
while the Mac OSX version is not supported under BioSPICE because of Java incompatibility 
issues on MacOSX. The primary design objectives of this architecture are: Extensibility, 
Scriptability, and Simplicity. Extensibility refers to the aspect where components can be added to 
the core with relative ease. Though the typical usage is through the GUI, it is possible to 
construct PAINT Analyses entirely through programming. One of the future enhancements is to 
be able to load and save Analyses. The proposed analysis file format allows a user to construct 
PAINT Analyses outside the GUI. Some of the key concepts in the new interface are described 
below.  
 

 

Figure 10: PtPlot module indicating TRE significance scores, filtered by the p-Over < 0.10 

Figure 11: An example Dashboard workflow using TJU modules for gene regulatory network 
analysis (February 2004). Note that on current Dashboard, only PAINT module is supported. 
The PAINT module on Dashboard 6.0 has been reworked with a new GUI and Input/Output 
formats to interoperate with NCA and KAGAN. 
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Analysis Tree: An Analysis is like an interactive workflow, where the user can add Components 
to the workflow, with the ability to review the results of each Task. An Analysis consists of 
predefined categories of Components, and the history of the Components - what parameters were 
used to generate the components. In other words, an analysis includes all the necessary 
information to reproduce all the components in the analysis. PAINT Analysis is organized as a 
tree like structure, referred to as the Analysis Tree. At the root level lie the Analysis parameters, 
followed by the Component categories as the children. Further, each component category can 
hold multiple instances of the component, each generated with a (possibly) different set of 
parameters. For example, the Component category Promoter Sequences may contain promoter 
sequences of length 2000 base pairs and 5000 base pairs. This organization enables the user to 
work with different parameter combinations in the same Analysis.  
 
Task: A Task is the process that generates an Analysis Component. Each task has an associated 
GUI component that is designed to receive user input for that Task. Executing a Task is the only 
way to add a Component to the Analysis. Each Analysis has an associated list of Tasks, which 
determines what components that analysis can have. Depending on the state of the Analysis, only 
some of the Tasks may be available. In other words, only those Tasks are enabled, whose 
dependent Components exist. For example, Finding TREs on promoter Sequences is disabled 
until the Analysis has a Promoter Sequences component. There may be other limitations too, 
such as, Import Gene List Task being disabled, if there is already an existing Gene List 
component.  
 
Analysis Component: An Analysis Component is a part of an Analysis, and consists of two 
pieces of information: the internal data for the Component, the parameters used to generate the 

Figure 12: PAINT Workflow, and the New Analysis dialog on the current Dashboard 
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component, including the parent Components involved. Parameter Viewer displays the parameter 
values used to generate the selected component in the Analysis Tree, while the Viewer pane 
shows the view of the Component data, based on the component category. For example, an 
instance of a TRE Identification Results would contain the TRANSFAC server used, the 
MATCH parameters, as well as the identifier of the Promoter Sequences Component that was 
used as input to the MATCH program. Almost all the Components have a textual representation 
of their internal data that can be written out as a file. These filenames for these are generated 
based on the name of the Component category, parameters used to generate that component, and 
the parent Component, if any. These files are typically generated when the Component is 
created.  
 
Working Directory: When creating a New Analysis, the user is prompted for an Analysis 
Name, and Working Directory. PAINT then creates a directory by the name of the user specified 
Analysis Name, in the given Working Directory. The purpose of the Working Directory is to 
store all the Component data in files, and make the results available outside the PAINT GUI.  
The annotated screen shot below shows how these concepts correspond to the GUI (Figure 13). 

 
 
PAINT Components 
PAINT Analysis is comprised of eight Components, and eight corresponding Tasks that generate 
the components. Figure 14 shows the available Tasks from the PAINT UI, a schematic 
representation of the PAINT Analysis, and the relationship among the components. The ovals are 

Figure 13: PAINT Architecture Overview 
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the components, and the connecting arrows indicate the Task names corresponding to the PAINT 
UI. 
 

 
GeneList (Task: Import Gene List)  
GeneList contains a list of gene identifiers. Currently supports Accession Number, LocusLink, 
Ensembl Gene ID, and Gene Symbol. On the BioSPICE Dashboard, the input gene list is 
obtained from the workflow, by reading in a TimeSeries data type. For more details on the 
Timeseries format, please refer to the TimeSeries Specification on the BioSPICE web site 
(BioSPICE account required). Values in the first "column" in the time series, are assumed to be 
the gene identifiers. Each analysis can have only one Gene List component, since Gene List 
characterizes an Analysis. In the parameter dialog box shown (Figure 14), when the user selects 
a file, the first few gene identifiers are shown in the preview box to enable the user to select the 
right kind of supported gene identifier. Clicking on the OK button creates a GeneList Component 
that is added in the appropriate component category. When the component is created, the 
imported gene identifiers are stored in a file in the Working Directory. On the Dashboard, the 
Task of Import Gene List is executed implicitly, as the TimeSeries input is provided from the 
Dashboard Workflow. 
 
Cluster Membership (Task: Import Cluster Membership) 
This component contains a mapping between the gene identifier from the gene list, and a Cluster 
ID. In the TRE Enrichment Analysis Task, TREs on the gene promoter sequences of each cluster 
can be compared to the Feasnet, or the Reference Feasnet. For more details, refer to the TRE 
Enrichment Analysis description. Typical cluster identifiers could be numbers, or alphabets. The 
included parameter dialog for Cluster Membership is capable of importing Cluster Membership 
component from a simple text file. It is possible to have multiple components in the same 
analyses, as it makes sense to have clustering analyses with different parameters on the same 
data set. No files are created in the Working Directory for this Component. The expected file 
format for import is straight forward: Gene identifier, followed by a tab character, and the cluster 
identifier per each line of a text file. No headers, comment lines or empty rows are allowed. It is 

Figure 14: PAINT Tasks in the GUI and the corresponding workflow schematic. 
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recommended to have the cluster identifiers as short as possible - for example: 1, 2, 3, 4, 5 or A, 
B, C, D, E etc. 
 
Reference Feasnet (Task: Import Reference Feasnet) 
A reference set is a list of genes, of which the input gene list is a subset. A Reference Feasnet is a 
Feasnet component generated from a selected reference list of genes. In the TRE Enrichment 
Analysis Task, an input Feasnet is compared to the Reference Feasnet, to compute the 
significance of the TREs in the input gene list. The selection of appropriate reference set is the 
key to derive meaningful hypotheses. Comparison of the experiment Feasnet to the entire 
genome gives erroneous results of the input gene list is obtained from a microarray that does not 
span the entire genome or is specific to a particular tissue/disease. However, the choice of 
reference does not end with using the Reference Feasnet from the microarray gene list. For 
example, in comparison of an early up-regulated gene set to the set of all up-regulated genes, the 
significantly enriched TREs point to those that are characteristic of early up-regulated genes 
relative to all the up-regulated genes.  
 
These following steps required to create a Reference Feasnet Component:  
1. Choose an appropriate reference as described above. 
2. Create a New PAINT Analysis - say, the Analysis Name is Reference and the Working      

Directory is C:\paint 
3. Fetch Promoter Sequences with the desired number of base pairs. 
4. Find TREs on the promoters with desired parameters. 
5. Build a Feasnet with the desired parameters. 
6. Find the file(s) with the extension .fnet in the directory: C:\paint\Reference. The file names 

have names starting with TREn where n is a number - the order in which the Feasnets appear 
in the Feasnet component category in the PAINT GUI. 

7. Create a new analysis, with the input gene list, and use the desired reference files when 
importing a Reference Feasnet. 

 
It is important that the desired parameters must match the parameters intended for the gene list of 
interest. No files are created in the Working Directory for this Component.  
 
Promoter Sequences (Task: Fetch Promoter Sequences) 
PAINT has a back end database component that stores promoter sequences of the supported 
organisms: Human, Mouse and Rat. These sequences are up to 5000 base pairs in length, 
upstream of the Transcription Start Site, as annotated by Ensembl. This Task is responsible for 
fetching the promoter sequences from PAINT database. Since it is required to contact the URL 
shown in the parameter dialog, it is required to have a network access to run this Task. It is 
possible to have multiple Promoter Sequences components in the same analysis, differentiated by 
the promoter length.  
 
The only user editable parameter here is the length of the promoter sequences. There is no 
established rule to select the number of promoter sequences. Typically, 2000 is a good number; 
if the TRE identification results do not yield expected known TREs, for example, greater 
promoter sequence length may be required. When the promoter sequences are fetched, they are 
written to a file (name starts with Promoters) in the Working Directory of the Analysis.  
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TRE Identification Results (Task: Find TREs on promoters) 
PAINT uses web-based MATCH program that finds TREs on the given promoter sequences, 
based on the TRANSFAC database. Currently, PAINT can connect to TRANSFAC Public server 
(free registration required), TRANSFAC Pro server (paid license required), or internal 
TRANSFAC Pro installation (paid license required). Since this requires working with an external 
web server, Internet access is required. Registration details of TRANSFAC Public can be found 
at: http://www.gene-regulation.com/register, and more information on TRANSFAC Pro at: 
http://www.biobase.de/pages/products/transfac.html  
The Promoter Sequences drop down list allows the user to select a set of Promoter Sequences on 
which this Task is executed. In the figure, the selection GeneList1_2000 means the promoter 
sequences fetched using the GeneList1 component, with the number of base pairs as 2000. The 
Filter option refers to the MATCH profile for cut-off scores in finding the TREs. Minimize False 
Positives being the most stringent, followed by Sum of MinFP and MinFN and Minimize False 
Negatives. Typically, Minimize FP is a good cut off if the downstream analysis does not include 
other ways to prune the results (TRE Enrichment Analysis does not prune the results, but only 
assigns p-values to the TREs). This Task takes a while to finish, depending on the number of 
sequences, as well as the number of promoter sequence length. When the results are fetched, 
they're stored as HTML files in the Working Directory. The results include the TRE, the TF that 
can bind to the TRE, the position of the TRE, the strand it is found on, and the matching scores. 
It is possible to have multiple instances of this component with varying parameters.  
 
Feasnet (Task: Build Feasnet) 
This Task enables further filtering of the TRE Identification Results. The first filter, Core 
Similarity Threshold can be adjusted between 0.9, 0.95, and 1.0, 1.0 being the perfect match of 
the potential binding site on the input promoter sequences with the TRANSFAC database. It is 
yet unclear whether to include the TREs found the complementary side of the promoter 
sequence. Though it is known that some TREs on the complementary strand do play a role, 
looking at all the matching sites on the complementary strand may mean more false positives. 
This Task makes it possible to build multiple Feasnets from the same TRE Identification results, 
but varying the filters. That way, the user can look at the Feasnet to make a decision on which 
Feasnet(s) to use for further analysis. Each generated Feasnet is written in the Working 
Directory, with the pattern: TREIDn_coresim_comp.fnet, where TREIDn is the TRE 
Identification Component used, coresim is the core similarity filter that takes one of the {0.9, 
0.95, 1.0} values, and comp indicates whether the TREs on complementary strand are included.  
 
TRE Enrichment Analysis (Task: TRE Enrichment Analysis) 
This is one of the key steps in PAINT analysis. Before executing this Task, it is required to 
import the desired Reference Feasnet and Cluster Membership components, which then appear in 
the drop down lists shown in the parameter dialog. The three kinds of comparisons possible are: 
Feasnet to Reference Feasnet, Cluster to Feasnet and Cluster to Reference Feasnet. The first 
analysis implies how the TREs in the selected gene list compare to the Reference Feasnet. The 
interpretation depends on how the gene list was selected, and the selected Reference. For 
example, if the gene list comprises all the differentially expressed genes (relative to a control), 
and the reference is the list of all genes on the microarray, the interpretation could be that the 
highly enriched TREs are responsible for the differential expression. The latter comparisons deal 
with the cluster membership, which typically is obtained from a gene expression pattern. In these 
cases, enriched TREs found on the genes in a given cluster to the reference can be attributed to 
the observed gene expression pattern, depending on how distinct the pattern is. The hint text 
below the options (as seen in the Figure 3g, each cluster subset compared to the Reference 
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Feasnet) indicates the kind of enrichment analysis chosen. For the selected Reference and Cluster 
Membership, p-values of the TREs are computed using Fisher's Exact Test. The resulting p-
values are stored as tab-delimited text files in the Working Directory.  
 
Filtered Feasnet (Task: Filter Feasnet) 
This is the output component of PAINT analysis - a hypotheses Gene-TRE interaction network. 
The "connections" (or interactions) in the network are based on filtering the TRE Enrichment 
Analysis results. The parameter dialog allows two basic filters, both acting on the statistical 
significance of the TREs. It is possible to disable the at the most filter or both the filters to look 
at the TREs. In the Component Viewer, the presence of a TRE (column) on the gene promoter 
sequence (row) is indicated by a colored square. A red color indicates over-representation or 
enrichment, and a cyan represents under-representation, the brightness of the color indicating the 
significance of the TRE. A gray square means that it is statistically not possible to imply that the 
TRE is significant in the list. If Cluster to Reference Feasnet, or Cluster to Feasnet was chosen in 
the TRE Enrichment Analysis, a cluster bar appears next to the gene identifiers that indicates that 
cluster the gene belongs to. The result of this component is a subset of the Feasnet, and is written 
as a tab-delimited text file in the Working Directory. It is possible to export this network as a 
GeneTF datatype for Dashboard integration. 
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7 Case Studies 
7.1 Experimental System for Neuronal Differentiation and Adaptation studies 
The model system considered presently is the N1E-115 neuroblastoma cell line (Amano et al., 
1972). After differentiation, N1E-115 cells synthesize several neurotransmitters and express 
functionally coupled neurotransmitter/neuropeptide receptors (Richelson, 1990). For use with 
N1E-115 cells we are currently printing ~8,600 mouse cDNAs which are greater than 95 per cent 
nonredundant onto 1-inch x 3-inch glass microarrays. This collection of cDNAs was derived 
solely from CNS tissues as part of the Brain Molecular Anatomy Project at the University of 
Iowa (http://brainest.eng.uiowa.edu/index.html). The set represents ~3,200 annotated genes and 
~5,400 unannotated genes using conservative definitions of annotation. 
 
The data for Case Study 1 was obtained by comparing gene expression in undifferentiated 
growing N1E-115 cells to that in differentiated N1E-115 cells. A set of 193 annotated genes that 
are differentially expressed at least by a factor of 2 was considered for further analysis. 
 
For the Case Study 2, the dataset is obtained from microarray experiments of differentiated N1E-
115 cells exposed to the neuropeptide angiotensin II (AngII). Ang II is a multifunctional 
hormone that influences the function of cardiovascular cells through a complex set of 
intracellular signaling pathways initiated by the interaction of Ang II with the AT1 and AT2 
receptors (Berry, 2001; Touyz, 2002). AT1 receptor activation leads to cell growth, vascular 
contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce 
apoptosis, vasodilatation and natriuresis. In an effort to isolate the transcriptional response to 
AngII to the AT1 receptor (AT1R), the AT2 subtype was blocked with a saturating dose of 
antagonist. Cultures of differentiated N1E-115 cells were pretreated with 10uM PD123319 for 
30 min by addition of a 1000X stock solution directly to the culture media without removal of 
the dish from the incubator.  After 30min, AngII (100nM final, 100uM stock) was rapidly added 
to all the parallel cultures required for the time course. Pretreated cultures with no AngII added 
were considered as time=0 samples. A time series of gene expression data was obtained from 
microarray experiments with RNA isolated at 0, 5, 15, 30, and 60 minutes after exposure to 
AngII. A total of 1338 genes with at least twofold change at any of the time points were 
considered responsive and were included in further analysis with PAINT version 2.3 (Note that 
the current PAINT version as of January 2006 is 3.3). 
 
PAINT 2.3 contains sequences from version 7.3a of the Ensembl annotated mouse genome 
database. This mouse draft sequence is based principally on whole genome shotgun sequencing 
of around 7x coverage. This was frozen in February 2002 and incorporates finished clone 
information where available. The sequence is estimated to cover 96 percent of mouse 
euchromatic DNA. A total of 22,444 genes that are annotated were processed of which 21,363 
promoter sequences were retrieved based on the TSS identification and filtering criteria specified 
in the Methods section. 
 
7.2 Case Study 1: Neuronal Differentiation 
As described above, an example microarray data set was obtained by comparing growing and 
differentiated neuroblastoma N1E-115 cells in culture providing 193 annotated genes that were 
differentially regulated at least by a factor of two (130 up-regulated and 63 down-regulated). The 
GenBank accession numbers of these 193 clones were provided as the input to PAINT. 
 
The Upstreamer module returned a list of 155 promoters, i.e., 38 of the 193 genes of interest did 
not have a promoter sequence that met the filtering criteria (specified in Methods) for 
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constructing the UpstreamDB database. This data set is referred to as DIFF155 for the rest of the 
document. Of the 155 promoters retrieved, 107 correspond to the up-regulated genes (referred to 
as DIFFUP107) and 48 to the down-regulated genes (referred to as DIFFDOWN48). These 155 
promoter sequences were processed using the TFRetriever module communicating with the 
MatInspector software. Within MatInspector, the vertebrate database with 128 TRE families and 
313 position weight matrices was utilized in motif inspection. The TFRetriever module retrieved 
motif matches for a total of 273 distinct TREs. FeasNetBuilder constructed a candidate 
interaction matrix between the 155 genes and 273 TREs. The CIMs for the DIFFUP107 and 
DIFFDOWN48 subsets were obtained from the DIFF155 CIM. 
 
The distributions of interactions for the 155 genes and the 273 TREs are depicted in Figure 15. 
The distribution is unimodal with long tails (low percentage of genes at the extreme ends of the 
distribution). This indicates that relatively few genes are regulated by very many or very few TFs 
(extreme ends of distribution shown in Figure 15a).  The distribution shown in Figure 15b 
indicates that a few TREs are present on significant fraction of the genes of interest indicating 
potential role in system-wide effects (right end of the distribution). Analysis of Figure 15b also 
indicates that most of the TREs are present on and hence can regulate relatively few genes each 
(suggesting a function in fine-tuning, local effects). 
 
A representation of the candidate interaction network is depicted in Figure 16. A subset of the 
CIM is shown in Figure 17. The genes and motifs were individually clustered using binary 
distance as the dissimilarity metric. The column immediately next to the CIM represents whether 
the corresponding gene is found to be up-regulated or down-regulated in the expression data. It 
should be noted that most of the up-regulated or down-regulated genes do cluster together based 
on the regulatory pattern of their promoters. However, there are clusters containing both up and 
down regulated genes indicating that the activity of specific transcription factors in the 
experiment needs to be utilized to prune the candidate interaction matrix to improve the network 

(a) (b) 

Figure 15: The distribution of interactions for (a) the genes and (b) the TREs in the DIFF155 
interaction matrix. There are relatively few genes that are regulated by either too large or too 
few number of TFs, indicating relatively rare cases of excessive or little regulation. The 
interaction distribution for transcription factors indicates that there are relatively few 
transcription factors that can regulate majority of the genes in the input list. 
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prediction. A network layout diagram containing five TREs in DIFF155 CIM with the lowest p-
values for over representation is depicted in Figure 18. 
 
The p-value of each TRE in CIMs for DIFF155, DIFFUP107 and DIFFDOWN48 was calculated 
using the StatFilter submodule. Analysis of the TREs that are significantly over represented in 
DIFF155, DIFFUP107 and DIFFDOWN48 revealed details that are very different from that of 
the analysis of the static cis-regulatory pattern (complete CIM). A total of 42 TREs were 
significantly overrepresented in at least one of DIFF155, DIFFUP107 and DIFFDOWN48. A p-
value threshold of 0.1 for DIFFUP107 and DIFFDOWN48, and of 0.15 for DIFF155 was 
employed to filter for TRE significance. It is interesting to note that only two families of TREs 
(MYOD and FKHD) were significantly over represented in both the up-regulated (DIFFUP107) 
and down-regulated (DIFFDOWN48) genes. Such a dramatic difference was not obvious from 
the analysis of the feasible cis-regulatory pattern based on all the TREs found to be present 
(Figure 16). Several of the TRE families are implicated in cell differentiation and maturation (for 
example, AREB: Ikeda et al., 1995; CREB: Dobi et al., 1995; GATA: Nardelli et al., 1999). 
 
Note that the results from the analysis of significantly over-represented or under-represented 
TREs may be a conservative estimate of the TREs involved in regulation in the experimental 
context of interest.  In the present case study of N1E-115 differentiation, some TREs that are 
known to be involved in the differentiation of other cell types were not found to be significantly 

Figure 16: Representation of the candidate interaction matrix for 155 differentially expressed genes and 
273 TREs analyzed in N1E-115 cell differentiation. Dataset is clustered using binary distance as the 
dissimilarity metric. Individual elements of the matrix are colored by significance p-values: over 
representation in the matrix (indicated in red), under representation (indicated in cyan), and the TREs that 
are neither significantly over nor under represented (colored in gray). The column to the left of the matrix 
represents whether the gene expression in differentiated cells: red indicates up-regulated genes and green 
indicates down-regulated genes. 
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over-represented.  One example is MZF1, not found to be significantly enriched in either of the 
up- regulated or down-regulated genes (p-value of 0.77 in DIFF107 and p-value of 0.59 in 
DIFF48), even though it has been shown to be involved in delaying cell differentiation in other 
cell types (Morris et al., 1994).  MZF1 and similar TREs may have not appeared to be significant 
in the present case study because they are not involved in N1E-115 differentiation, or because 
the data currently available was not sufficient to identify every TRE that is involved in the 
process. 
 
Another interesting observation was that it is possible that a particular TRE is not found to be 
significantly over-represented or under-represented in a particular cluster/subgroup of genes, but 
can still be significantly over-represented in the overall set of genes considered: NFAT, LEFF, 
and GATA/GATA3.01. These are implicated in cellular differentiation in different neuronal cell 
types (NFAT: Plyte et al., 2001; GATA/GATA3.01: Nardelli et al., 1999). 
 

 
 
Given no other information, an identification algorithm would have to compute 71*87=6177 
connection parameters. However, since the candidate network contains 883 nonzero entries, i.e., 
only 883 (14.2 per cent) interaction parameters need to be computed. Even this is a gross 
overestimate as the dynamic activity data about specific TFs from ChIP experiments can 
substantially reduce the number of candidate interactions further. The localization data thus 
obtained can significantly improve the regulatory network identification (Zak et al., 2001; 
Hartemink et al., 2002). 
 

Figure 17: A subset of the candidate interaction matrix for DIFF155. 
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7.3 Case Study 2: Neuronal Adaptation 
As described above, a gene expression time series data set was obtained from microarray 
experiments involving neuroblastoma N1E-115 cells at {0, 5, 15, 30, 120} minutes after 
exposure to angiotensin II. Of the ~8600 genes on the microarray, a total of 1338 genes with at 
least two-fold change at any of the time points were considered responsive and were included in 
the analysis. This list of 1338 genes was presented as input to PAINT for promoter analysis. 
 
The PAINT Upstreamer module retrieved 578 promoters (referred to as ANG578 for the rest of  

Figure 18: A network layout showing the top five TREs in DIFF155 CIM (p<0.1). 
The rectangular boxes represent TREs and ellipses represent genes. 

(a) (b) 

Figure 19: The distribution of interactions for (a) the genes and (b) the TREs in ANG578 CIM data. 
There are relatively few genes that are regulated by either too large or too few number of TFs, 
indicating relatively rare cases of excessive or little regulation. The interaction distribution for TFs 
indicates that there are relatively few TFs that can regulate majority of the genes in the input list. 
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the document). The promoters for almost all the annotated genes in the initial set of 1338 genes 
were retrieved. The connectivity of the ANG578 CIM is depicted in Figure 19 above. The 
connectivity in CIM for ANG578 was qualitatively similar to that observed in the DIFF155 data 
set (case study 1). As in Case Study 1 there were few genes that could be regulated by very many 
or very few TFs (Figure 19a). Again, as in Case Study 1, analysis of the distribution shown in 
Figure 19b indicates that relatively few TFs can regulate large number of genes in ANG578 
(right end of the distribution: system-wide effects) and most of the TFs regulate few genes each 
(left end of the distribution: fine-tuning, local effects). 
 
A representation of the candidate interaction network is shown in Figure 20. The genes and 
TREs are individually clustered using binary distance as the dissimilarity metric. Each row in the 
column immediately next to the dendrogram represents the cluster number of each gene from 
clustering the expression data. Note that many of the genes in an expression-based cluster also 
cluster together based on the regulatory pattern of their promoters. However, this analysis is 
based on the static structure of the CIM. The activity of specific TFs in the experiment needs to 
be utilized to prune the candidate interaction matrix for improving the network prediction. 
 
The p-value of each TRE is calculated by 
the StatFilter module. Based on a p-value 
threshold of 0.1, several TREs were shown 
to be over represented in the ANG578 CIM 
network. Several of the factors binding to 
these TREs are known to be involved in 
cellular response to angiotensin II: AP1F 
and EGRF - Lebrun et al., 1995; CREB - 
Cammarota et al., 2001; NFKB - Wolf et 
al., 2002. Also several TREs that are known 
to play role in neuronal development are 
also over represented in the ANG578 CIM: 
RBPJK - de la Pompa et al., 1997; HEN1 - 
Bao et al., 2000; LMO2COM - Yamada et 
al., 2002. 
 
The transcription factor family STAT is 
shown to be involved in response to 
stimulation of AT1R (Mascareno & 
Siddiqui, 2000). However, the TREs 
corresponding to the factor STAT were not 
found to be over represented in ANG578 (p-
values of all TREs binding to STAT family 
of TFs was close to 0.5 in ANG578). 
Further PAINT-based analysis of individual 
clusters of genes in ANG578 may provide 
the group(s) of genes with over represented 
TREs for the STAT family of TFs, 
however. 
 
 

Figure 20: A representation of the candidate 
interaction matrix for 578 differentially expressed 
genes and 291 TREs analyzed in ANG578. The 
dataset is clustered using binary distance as the 
dissimilarity metric. 



38 

7.4 Case Study 3: Circadian Rhythms 
We have been focusing on analyzing the microarray gene expression data in the 
SupraChiasmastic Nucleus (SCN) region of the brain. SCN is a well studied system, and is ideal 
for the study of circadian rhythm, as the gene expression shows a clear clock based cycling of 
genes of interest, and outputs important to physiology: protein levels and spiking activity. Effects 
of Modulatory inputs such as EGF in the SCN can also be studied. This offers a good 
opportunity towards integrating the gene regulation with the spiking physiological output to 
create true whole cell input-output models. In other words, the question we are asking is: How 
do changes in gene activity cause changes in the neuron activity/function? 
 
In this Usecase, our objective has been to understand the gene regulatory network, and the key 
regulators that drive the free running biological clock. In the future, this knowledge can be 
extended to understand the effects of modulators of the clock, such as Epidermal Growth Factor 
(EGF). We have been working with microarray gene expression data from this publication 
(Figure 21): Coordinated transcription of key pathways in the mouse by the circadian clock, Cell 
109(3):307-320, 2002. The gene list of interest is the set of differentially expressed genes in the 
SupraChiasmastic Nucleus (SCN) from the clusters CT6, CT10, and CT18 (148 genes out of a 
total of 292 genes for which promoters exist in PAINT database). The question we seek to 
answer here is: "What are the candidate regulatory networks characteristic to clusters CT6, CT10 
and CT18 relative to all the differentially expressed genes?" 

 

Figure 21: Figure 1A from Panda et al., Cell, 2002. Circadian Regulated Genes in the SCN. 337 SCN 
transcripts were determined to be circadianly regulated by COSOPT, and they were binned into six 
circadian phases, 2, 6, 10, 14, 18, and 22, by cluster analysis. Data traces of different Phase cluster in the 
SCN are shown. Values in the x axis represent hours after the first subjective dawn. 

 
Our analysis focused on the TREs on the promoter regions of the genes of interest, to identify the 
significant TREs, as well as the TFs that can bind to these TREs. A hypothesis network was 
generated based on significantly enriched TREs from the clusters CT6, CT10, CT18, relative to 
all the differentially expressed genes Of these, the significance scores of the binding site for AP-
1 was found to be in agreement with the binding activity of the Transcription Factor AP-1, as 
illustrated in the Figure 22. (Francois-bellan et al., Brain Res Mol Brain Res. 2000 Dec). Figure 
4 also shows the significance scores of the TREs seen in the Figure 3, as well as the TRNA 
workflow on the Dashboard 5.0.  
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We have started looking at the combinatorial effects of the TREs. Combinatorial regulation 
addressed here is based on the concept of Composite Elements (CE). Composite regulatory 
elements contain two closely situated binding sites for two distinct transcription factors. Specific 
factor-DNA and factor-factor interactions contribute to the function of CEs. Cooperative action 
of TFs within the CEs result in highly specific pattern of transcription, which cannot be provided 
by involved factors separately. Current efforts focus on analysis of promoter regions of co-
expressed genes, to find CEs and generating interaction networks of these genes. 

We have explored the dependence of the hypotheses on changes in the algorithmic parameters to 
identify robust hypotheses on CREs. In this case, we varied the similarity score in matching to 
known CREs from 0.7 to 1.0 in steps of 0.05, and considered those with 0 or 1 base pair 
mismatch, yielding a total of 7*2=14 parameter choices.  

Only those CREs that were enriched for all parameter variations were considered in the 
hypotheses. 

  

Figure 22: Experimental data for AP-1 activity corresponding to TRE significance scores 

Based on the results, we have made robust hypotheses on functionally related TRE pairs (CREs) 
relevant to the gene regulation in free-running circadian clock neurons. The results are shown in 
Figure 23 as significance scores, calculated as -log (p-value) to allow us to focus on order of 
magnitude differences in enrichment. One of the interesting results we came across from this 
analysis is that, the TRE AP-1 binding site from TRE Enrichment Analysis is enriched in the CE 
Enrichment Analysis as well: AP-1/CEBPbeta3. Our results extend the experimental findings 
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with the hypothesis that the observed increased activity of AP-1 is functioning as part of 
combinatorial regulation with CEBPbeta3. 

 
Figure 23: Significance scores of Composite Elements. Circled is the CE AP-1/CEBPbeta3 

 
7.5 Case Study 4: Pre-apoptosis in Kidney cells exposed to the pathogen Staphylococcal 
Enterotoxin B (SEB) 
TRNA as applied to gene expression data from SEB-induced apoptosis, in the Human Renal 
Proximal Tubule Epithelial Cells (RPTEC). The primary objective of this analysis is to augment 
an existing model based on contextual biological knowledge, with key TFs, potential regulation 
of key genes by these TFs, and a regulatory network of these TFs. Our analysis identified 18 
significant TFs, 7 of which are already present in the aforementioned model, and the rest are 
found to be potentially relevant, and will be added to the model. 
 
In this case study, the data constituted of: a) Gene expression timeseries of about 6700 genes 
from the microarray array experiment of the RPTEC exposed to 50microgram of SEB, measured 
at 2, 4, 6, 8, 12 and 24 hour timepoints after the exposure, (referred to as RPTEC6699 
henceforth), b) List of 909 differentially expressed genes from RPTEC6699, with log ratios of 
expression values (DIFF909) and c) List of 115 genes and TFs present in the model 
(MODEL115, TFs respectively) . Our objectives in this analysis were: a) Identify the statistically 
significant TFs that may be correlated with the gene expressed under study, b) find significant 
TF-gene interactions, and c) Hypothesize a regulatory network of the significant TFs. Our 
analysis and results are presented in the following three sections, each section corresponding to 
one of the objectives listed.  
 
TRE enrichment analysis 
The purpose of this phase is to identify statistically significant TREs, and thereby the TFs that 
can bind to these TREs, in the context of the given gene expression. It is also required to rank the 
TFs based on the significance that allows the downstream analyses, such as TF binding activity 
prediction, to pick as many TFs as dictated by computational and other practical constraints. Our 
approach was to select an initial set of significant TFs based on TRE enrichment, and rank them 
based on cluster specificity score of the selected TFs. The details of the analysis methods are 
described below. We used the Multi-experiment Viewer program from TIGR (www.tigr.org) for 
clustering the DIFF909 dataset, to relate the gene expression pattern to transcriptional regulation. 
We considered only those genes that have valid expression values for all the given timepoints, 
the amount being about 525 genes (DIFF525). The results of the cluster analysis are shown in 
Figure 24. Of these, we selected only those clusters that have a distinct expression pattern, 
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constituting of genes that are clearly co-expressed. Specifically, a list of 405 genes that belong to 
the clusters: A, B, D, F, G, I, J, K, L, and O are picked for TRE enrichment (referred to as 
DIFF405 henceforth). 
 
  

 
 Figure 24: DIFF525 cluster analysis results using k-means algorithm in TIGR MeV software. 

 
For the genes in the DIFF405 set, promoter sequences of up to 5000 basepairs were retrieved 
using PAINT 3.2 (Vadigepalli et al., http://www.dbi.tju.edu/dbi/tools/paint3.2) Human promoter 
database. TREs and the corresponding TFs on these promoter sequences were identified using 
TRANSFAC® 8.3 database and the corresponding Match® program. The TRE enrichment 
scores are based on the TREs present on the promoter sequences of the genes that belong to each 
of the clusters in DIFF405, relative to the two reference sets: DIFF405, and RPTEC6700. The 
interactions were analyzed for sensitivity of the parameter choices using six different 
combinations of the parameters, namely, the Core Similarity score, whether to include the TREs 
on the complementary strand of a promoter sequence, while minimizing the false positives 
(Match reference) 1) 0.90 Core.sim., (+) strand only, 2) 0.90 Core.sim., (-) strand included, 3) 
0.95 Core.sim., (+) strand only, 4) 0.95 Core.sim., (-) strand included, 5) 1.00 Core.sim., (+) 
strand only, and 6) 1.00 Core.sim., (-) strand included. Statistical significance scores of TRE 
occurrences were computed based on Fisher's Exact Test (Vadigepalli et al., 2003) across all the 
considered parameters, and relative to both the reference sets. TREs that passed the set threshold 
(p-value <= 0.05), in at least half of the considered parameter sets were selected for further 
analyses. In addition, Co-clustering score for each TRE is calculated based on the shared 
expression clusters for each of the genes that are targets of given TRE. The score calculated in 
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this scheme is based on the probability that the target genes of a TRE in multiple clusters are 
selected as a random sample from the full gene list divided into clusters based on expression 
data. Co-clustering scores of the TREs were used to rank the selected TREs, with the idea that 
the more specific a TRE is to a gene expression cluster or clusters, the higher is the priority to 
include the TF associated with the TRE in the model. Table 2 shows the list of the selected TFs 
based on the co-clustering rank and the individual TRE enrichment analysis. The list of the TREs 
thus obtained was subsequently filtered based on the ratio of the number of genes that have a 
TRE, relative to the total number of genes. The overall TF hypotheses that resulted from 
combining multiple enrichment analysis results, co-clustering scores, and additional count-based 
filters are shown in the Table below. Some of these are already present in the existing model and 
the remaining TFs are the potential hypothesized components that need to be added to the model. 
 
Significant Gene-TF interactions 
Some of the TFs that were in the model, believed to be important in the biological context, did 
not meet our stringent thresholds set for statistical significance. These TFs were added to the list 
of the selected TFs from Table 2, to be analyzed for potential transcriptional regulation of the 
genes in the model. In effect, the resulting network structure would consist of regulators based 
on prior knowledge, as well as TRE enrichment analysis. The MODEL115 gene list was run 
through PAINT 3.2 and TRANSFAC with the most restrictive of Match parameters (core sim:1, 
compl strand: no) to limit the results to only high confidence TREs. The resulting candidate 
interaction matrix of TREs on the genes was filtered for only those TREs than can potentially be 
bound to, by the selected TFs. 
 
TF Regulatory Network analysis 
To enable modeling of the transcriptional regulation, it is essential to "close" the network, i.e., 
the regulation of the TFs themselves must be considered. Since the genes included in the model 
are based on known biological function, only the selected TFs are considered to be the 
significant regulators of the genes encoding the selected TFs. Up to 5000 basepairs of promoter 
sequences of the encoding genes were retrieved from PAINT 3.2 Human Promoter Database, and 
run through TRANSFAC Match with most restrictive parameters (Core sim: 1.0, minfp, compl: 
no). The resulting candidate interaction matrix is filtered for only the selected TFs. The resulting 
network structure is shown in the Figure 25. 
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Figure 25: Regulatory network involving the PAINT predicted TFs (see Table 2 below).
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Table 2:  A summary the PAINT predicted transcription factors relevant to the SEB response in 
the kidney (RPTEC). 

TF name Biological processes In 
model? 

E47 Causes acute myeloid leukemia; induces enhanced 
proliferation; apoptosis Yes 

c-Ets-1 Immune response; negative regulation of cell proliferation Yes  

CRE-BP1:c-
Jun 

Mediates activation in response to UV and other cellular 
stresses< /td> Yes 

c-Myc:Max Cell proliferation control; may induce apoptosis Yes 

SRF Interacts with several essential TFs Yes 

E2F-1 Regulates Apaf-1, the gene for apoptosis protease-activating 
factor 1 Yes 

NF-KappaB Key regulator of genes involved in infection, inflammation 
and stress< /td> Yes 

HNF-4alpha Blood coagulation; lipid metabolism Potential 

AR Cell proliferation; differentiation Potential 

Arnt Adaptive response to hypoxia Potential 

Lmo2 
complex Regulation of red blood cell development Potential 

IPF1 Glucose-dependent regulation of insulin gene transcription Potential 

Bach2 Transcriptional repressor, activator; B-cell specific Potential  

PPAR Key regulator of adipogenesis Potential 

POU1F1 Negative regulation of cell proliferation Potential 

SMAD-4 May act as a tumor suppressor Potential 

USF Activates CEBPA that is related to body weight homeostasis, 
leukemia Potential 
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8 A Novel Methodology for Structured Modeling of Gene Regulatory Networks 
We now describe a methodology for the structured modeling of gene regulatory networks.  It 
consists of two distinct parts: 1) determination of nuclear connectivity, and 2) model 
identification.  A schematic diagram is shown in Figure 26.  Even though both the model 
(parameter) identification (box in lower right-hand corner) and nuclear connectivity 
determination make use of the gene expression data directly, they are decoupled, with the nuclear 
connectivity being fed to the model identification as prior knowledge. 
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Figure 26: Integrated components of the structured approach to gene regulatory network 
identification.  Information is designated by ovals, actions are designated by rectangles.  External 
sources of information are indicated by dotted ovals and include promoter sequences of all the genes 
as obtained from genomic sequences; databases describing TREs and the TFs that bind to them; 
protein-DNA interaction data; and half lives for the transcripts of all of the genes.  Internal sources of 
information that would be collected from a particular experiment are indicated by dashed ovals and 
include genome-wide gene expression data and specific input perturbations.  Actions include 
clustering of genes by similarity in expression profiles; searching promoter sequences within clusters 
for statistically significant TREs; searching TRE databases to identify which gene products bind to 
specific TREs as TFs; and nonlinear model identification that assembles nuclear connectivity, 
expression levels of target genes and TFs, and half-life data into a gene regulatory network model.  
The final result, the gene regulatory network model, is indicated in the bold oval with the heavy line. 
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8.1 Nuclear connectivity determination 
Nuclear connectivity determination requires as inputs gene expression data, promoter sequences, 
databases of TREs, and protein-DNA interaction data, and involves clustering, searches for 
significant TREs in the clusters, and databases/literature searches for the TF/TRE couplings.  It is 
the most complex aspect of the gene network identification problem described presently.  The 
primary assumption is that genes with similar expression profiles are regulated similarly, and 
thus the promoters of genes clustered by gene expression profiles will be enriched for the TREs 
to which the involved TFs bind and regulate gene expression.  Details of each of the steps are 
provided below. 
 
8.1.1 Clustering 
In the present work, the objective of clustering genes is to partition them into groups that are 
regulated similarly, so that the promoters of the genes in the same group may be searched for 
over-represented TREs.  The assumption that genes that are regulated similarly will have similar 
expression profiles allows genes to be grouped on the basis of similarities in their expression 
time courses (synexpression groups, Niehrs and Pollet, 1999).  Many approaches for clustering 
gene expression data have been described (Sherlock, 2000; Dougherty et al., 2002). 
  
8.1.2 TRE search 
Given the gene clusters, the next step in determining nuclear connectivity is to search the 
promoters of the genes in the group for TREs that are statistically over-represented (“enriched”) 
compared to random groups of the same size (Bucher, 1999; Altman and Rayachaudhuri, 2001).  
Given that TREs are short and degenerate, they are likely to appear randomly in practically any 
DNA sequence, and thus the mere presence of a TRE in a promoter is not strongly indicative of 
the regulation of that gene by the TF that binds to the TRE.  The presence of a statistically over-
represented TRE in a group of promoters obtained by clustering expression profiles, however, 
does strongly suggest that the binding of a TF to that TRE is responsible in some way for the 
particular pattern of expression in that cluster.  It follows that clustering plus TRE search may be 
viewed as a means to identify both the TREs that are actively bound during a particular process, 
as well as biologically significant TRE-gene pairings.   
 
The first step of the TRE search is to obtain the promoter sequences for the genes in the various 
clusters.  Several bioinformatics tools and databases may do this automatically given a gene list, 
including SCPD (Zhu and Zhang, 1999) for yeast, and PAINT (Vadigepalli et al., 2003) for 
mammals.  Given the gene clusters and their respective sets of promoter sequences, there are two 
general methods for finding TREs.  One method attempts to discover over-represented TREs à 
priori from the promoter sequences themselves, without any prior knowledge, and has been 
implemented in several bioinformatics tools (Roth et al., 1998; Tavazoie et al., 1999).  Another 
method involves a two-step process in which the promoter sequences are searched for TREs that 
are compiled in databases, such as SCPD (Zhu and Zhang, 1999), or TRANSFAC (Matys et al., 
2003).  Tests of statistical significance for the enrichment of TREs in each of the clusters are 
then performed (Elkon et al., 2003; Vadigepalli et al., 2003; Zak et al., manuscript in 
preparation).  In some cases, it may also be possible to test the TREs identified à priori for 
enrichment in each of the clusters. 
 
Were TREs only to appear once per promoter sequence, the test for their statistical enrichment 
could be readily carried out using the hypergeometric distribution (Jakt et al., 2001). TREs 
however, are known to occur in multiple copies in individual promoters (Taylor et al., 2000), and 
repeat appearances must be factored into the test for significance because repeated TREs are less 



47 

likely to have arisen randomly.   One group has attempted to ameliorate this problem by using an 
extended hypergeometric distribution in the significance test (Elkon et al., 2003), but this 
approach becomes intractable for numbers of TRE/promoter sequence greater than about 3 (we 
observed as many as 40 TREs/500 base pair promoter sequence).  An alternative is to use an 
empirical approach in which reference distributions for the significance test are constructed by 
randomly sampling clusters from total gene population and tabulating the number of times each 
TRE was observed in each cluster (Zak et al., manuscript in preparation).  The reference 
distributions are then used to directly calculate the probability (p-value) that the observed 
number of occurrences of each TRE in each cluster can be explained by random variation alone.  
TREs with very low p-values are taken to be statistically significant, with typical cutoffs being p 
< 0.05 (5%) or p < 0.01 (1%). 
 
8.1.3 Assembling nuclear connectivity 
The combined result of the clustering and TRE search steps is both a list of TREs that are likely 
to be actively bound in the system and a network of TRE-gene pairings.  This TRE-gene 
connectivity is not sufficient for modeling, however, because the TREs must be related back to 
the TFs that bind to the TREs.  In some cases this is straightforward, with the TRE being specific 
for a single TF.  It is more common, however, for TF heterodimers to bind to TREs, with the TF 
dimerization partners determining how they regulate the transcription of target genes (Alberts et 
al., 1994).  Information concerning the TFs that bind to specific TREs may be obtained from 
databases (Matys et al., 2003) or the literature.  When the TFs specific for the TREs have been 
identified the nuclear connectivity determination is essentially complete.  Protein-DNA 
interaction data (Lee et al., 2002), if available, may be used to filter out TF-gene interactions that 
have not been observed experimentally, thereby providing additional refinement to the nuclear 
connectivity. Although it is appealing to base nuclear connectivity entirely on protein-DNA 
interaction data, this may not be advantageous given that potential binding of a TF to a promoter, 
as provided in protein-DNA interaction data, is not indicative of the activity of that TF during the 
process of interest.  Combining protein-DNA interaction data with predicted TF activities from 
gene expression clustering/TRE is preferable because only the TFs that are likely to be active are 
considered in the subsequent steps of the identification. 
 
8.2 Model Identification 
Once the nuclear connectivity is known, the dynamic gene regulatory network model may be 
identified from the gene expression data for the regulated genes and the TFs.  This involves 
specification of the dynamical model structures and parameter estimation for the nuclear (g(⋅)) 
and cytoplasmic (h(⋅)) models (Figure 2(b)).  The gene regulatory network model identification 
technique used in the present work has been described elsewhere (Zak et al., 2003b).  It is based 
on the Hartley Modulating Functions (HMF) approach to continuous-time system identification 
(Patra and Unbehauen, 1995; Daniel-Berhe and Unbehauen, 1999).    
 
Modulating functions (MF) approaches were developed by Shinbrot (1957) as a means to 
estimate parameters in nonlinear dynamical systems by linear regression.  The key steps in MF 
approaches are (1) expressing the system in input-output differential (IOD) form that is linear in 
the parameters (LP) to be estimated, (2) multiplying both sides of the IOD system by the known, 
smooth MF φ(t), (3) integrating the system from t=0 to t=T (the final sampling time), and (4) 
applying integration by parts to transfer derivatives of the states to derivatives of φ(t).  
Appropriate selection of φ(t) removes any need to estimate derivatives from data, while 
performing steps 1-4 with several MFs allows the model parameters to be estimated by linear 
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regression.  MF approaches have the advantages of simplicity in parameter estimation, no need 
to approximate derivatives from data, and, given that the experimental data is integrated, they 
relax the traditional requirement for uniformly sampled data.  Since uniformly sampled data is 
uncommon in biology, this latter point is of particular interest for the current discussion.  The 
primary disadvantages are that the system must be LP when expressed in IOD form, and that 
bias-free parameter estimates cannot be guaranteed for all nonlinear models (Niethammer et al., 
2001).    
 
Possible dynamical structures for the nuclear (g(⋅)) and cytoplasmic (h(⋅)) models are now 
described. For g(⋅), the dependence of the expression level of gene i on the activity of a single 
TF, u(t), can be described by a simple linear model: 

              (3) 
where xi(t) is the scaled (-1 ≤ xi(t) ≤ 1, xi(0) = 0) mRNA level for gene i, ai is the transcriptional 
activity constant for gene i (ai > 0 corresponds to activation, ai < 0 corresponds to repression), 
and di is the first order degradation constant for xi.  There are several ways to model genes that 
are regulated by more than one TF, as the TFs may have additive, multiplicative, or complex 
effects on the transcription rate.  Choosing between the options will have to be based on the 
biology of the system, or else multiple alternatives should be considered. 
 
Several dynamical structures may be considered for the cytoplasmic model h(⋅).   We presently 
restrict our attention to autonomous systems (for example, the cell cycle) for which the external 
inputs, v(t), are zero, and TF activity is regulated at the transcriptional level, and thus u(t) 
depends only on the TF mRNA levels.  In the simplest case, the TF is composed of only one 
protein, and thus depends only on one mRNA level, giving:  

                                      (4) 
where xTF(t) is the scaled (0≤ xTF(t) ≤ 1, xTF(0) ≠ 0) TF mRNA concentration, and q(⋅) is a 
nonlinear saturating function, with 0 ≤ q(⋅) ≤ 1.  In the case where the active TF is composed of 
two proteins, a possible model structure is: 

                     (5) 
where xTF1 x xTF2  is the scaled product of the mRNA concentrations of the two genes that make 
up the TF.  Using Equation 5, the expression profiles of two genes are combined to create a 
single time course of TF activity. 
 
The models in Equations 4 and 5 may be made more realistic by including the delay that occurs 
between the appearance of the mRNA of a gene and functional protein, due to several 
intermediate biological processes (translation, for example).  These additional biochemical 
processes may be approximated by increasing the dynamical order of Equations 4 and 5, 
respectively as follows: 

       (6) 

    (7) 
where e is the first order degradation constant for the active TF.  The models in Equations 6 and 
7 will be referred to as lagged models (because they incorporate an additional dynamic lag), 
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while those in Equations 4 and 5 will be referred to as unlagged models.  By including the lag, 
h(⋅) becomes a dynamic model, in contrast to the static models of Equations 4 and 5. 
 
In summary, for each gene i, two parameters (a and d) are to be estimated in g(⋅), and either zero 
or one parameter (lagged models) needs to be estimated in h(⋅), given prior knowledge of q(⋅).  
The function q(⋅) is often not known, and is thus an additional model structure to define with 
additional parameters to estimate.  One possible strategy is to define a canonical structure and a 
nominal set of parameter values that correspond to different qualitative behaviors.  The model 
parameters that do not appear in q(⋅) are then estimated for each nominal value in the set.  In the 
present work, q(⋅) is a single parameter nonlinear saturating structure, and three parameter 
values, corresponding to approximate linearity, weak nonlinearity, and strong nonlinearity, are 
considered (details of the approach given in Zak et al., 2003b).       
 
Equation 3, by explicitly including mRNA degradation rate constants, also allows this other set 
of data to be included into the overall structured gene regulatory network identification approach. 
Genome-wide measurements of mRNA half lives (and therefore degradation constants) are 
increasingly available (Wang et al., 2002; Fan et al., 2002; Selinger et al., 2003; Yang et al., 
2003), and may be readily integrated into the model identification through parameter di.   
Including this information reduces the number of parameters to be estimated, and, given that the 
time scale on which any mRNA level responds to changes in transcription is determined by its 
half-life (Hargrove and Schmidt, 1989), is a means to include dynamic constraints in the 
modeling approach. 
 
We must point out that the processes encapsulated in function h(⋅) are generally highly dynamic 
and highly regulated in cells, and it is possible that the models in Equations 4-7 are overly simple 
approximations.  Genomic and functional genomic data types are largely specific to 
transcriptional regulation, however, and thus provide little information for characterizing h(⋅).  
For this reason, h(⋅) depends the most strongly on what system-specific prior knowledge is 
available. When little is known about regulation of TF activity, it is reasonable to assume that it 
occurs at the transcriptional level, and thus Equations 4-7 are appropriate.  In cases where 
information about more complex modes of regulation is available, h(⋅) can be made more 
complex as necessary.  For example, it is straightforward to integrate computational models that 
describe how regulators of TF activity are regulated by extracellular signals and/or intracellular 
signaling (Ramkrishnan et al., 2002; Neves and Iyengar, 2002; Bhalla, 2003), or how TF activity 
is regulated in specific cellular process (Chen et al., 2002), into h(⋅).  One demonstration of this 
integration may be found in Jin et al. (2003), although the authors do not use a structured 
modeling approach in their study.  
 
8.3 Case Study: Yeast Cell Cycle 
The yeast cell cycle is an attractive system for demonstrating the approach of the present work 
for many reasons.  These include the availability of several microarray time courses with enough 
time points (~15) to render them suitable for modeling (Cho et al., 1998; Spellman et al., 1998); 
the availability of half-lives for nearly every gene in the yeast genome (Holstege et al., 1998; 
Wang et al., 2002); the availability of protein-DNA interaction data for most of the yeast TFs 
(Lee et al., 2002); and the availability of a database (SCPD) from which promoter regions and 
putative TREs for nearly every yeast gene may be obtained (Zhu and Zhang, 1999).  In the 
present study, we restricted our analysis to genes expression profiles of genes from Cho et al. 
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(1998) that were most variable as defined by Tavazoie et al. (1999) and had transcript half life 
data available in Wang et al. (2002), 2042 genes in total. 
 
8.3.1 Nuclear connectivity determination: clustering 
We used the k-means clustering algorithm (Hartigan and Wong, 1979) in the present work to 
cluster the gene expression profiles.  The clustering results obtained using this method are 
sensitive to the clustering parameters (Sherlock, 2000), which include the number of clusters and 
the initial specification of the cluster centers, but we hypothesize that biologically meaningful 
results should not be.  For this reason, we took an approach that allowed us to identify results 
that were robust to variations in the clustering parameters.  Specifically, we performed the 
clustering with three different numbers of clusters (10, 30, and 60, following Tavazoie et al., 
1999) and five different initializations, giving a total of 15 different clustering results that 
together comprised 500 overlapping clusters.  This set of clusters was then used in the 
subsequent TRE search, as described below. 
 
8.3.2 Nuclear connectivity determination: TRE search 
 Because it makes use of the accumulated knowledge from the literature, we used the database-
driven approach for the TRE search.  The first step was to obtain the promoter sequences for the 
genes, which we did using the S. cerevisae promoter database (SCPD: Zhu and Zhang, 1999).  
Specifically, we obtained sequences 500 base-pairs upstream from the start codons.  We then 
used basic pattern matching tools built into SCPD to count the number of times the consensus 
sequences (and their reverse complements) of the ~50 TREs in SCPD appeared in each promoter 
sequence.  For example, "GGATG", the reverse complement of the consensus sequence for 
GCR1, was found twice in the promoter sequence for YBL072C.  Further details about the 
methods used to identify TREs in the promoter sequences are available upon request.  We then 
used the empirical approach (Zak et al., manuscript in preparation) to test the 500 clusters for 
enrichment of specific TREs over random groups of genes of the same size.  TREs that had a 
probability of random occurrence of less than 0.1% (p <0.001) were deemed statistically 
significant.  Finally, to guard against TREs that were highly sensitive to the clustering 
parameters, we retained only those that were significantly enriched in at least 4 out of the 500 
total clusters (corresponding approximately to TREs that were significantly enriched in 
clustering results from 4/5 different initializations).  
 
Some of the TREs were very robust to variations in the clustering parameters.  For example, 
there was always at least one cluster enriched for both SCB and MCB, regardless of the number 
of clusters or initialization.  Similarly, 4/5, 5/5, and 3/5 of the clustering results that  used 10, 30, 
or 60 clusters, respectively, had at least one cluster enriched for both GCR1 and RAP1.  Other 
TREs showed some sensitivity to the number of clusters, for example, 4/5 of the initializations 
using 10 clusters had at least one cluster significant for SFF, while 4/5 of the initializations using 
60 clusters had at least one cluster significant for both ACE2 and SWI5, but SFF was not 
significant in any of the clustering results using 60 clusters, and ACE2 and SWI5 were not 
significant together in any clustering results using 10 clusters.  To explore further the robustness 
of the clustering results to the clustering parameters, we investigated the extent of overlap 
between genes in clusters obtained using different clustering parameters that were enriched for 
the same TRE.  We found that a significant number of genes (54) always appeared in clusters 
enriched for both SCB and MCB, regardless of clustering parameters.  In contrast, there were no 
genes that consistently appeared in all clusters enriched for the other TREs. 
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Overall, eight TREs or TRE pairs were significant in at least four clusters, and 100 out of the 500 
total clusters were significantly enriched for at least one TRE.  The eight significant TREs/TRE 
pairs and the number of clusters that were enriched for them are given in Table 3.  With two 
exceptions (out of 6), all TREs that were present in SCPD and were identified in Tavazoie et al. 
(1999) for the same dataset were also found to be significant in the present study.  Additionally, 
we identified physiologically relevant co-occurrence of TREs that Tavazoie et al. (1999) did not, 
such as RAP1-GCR1 and ACE2-SWI5 (where the ‘-’ is used to distinguish clusters that were 
enriched for both TREs from clusters that were enriched for either TRE individually).  RAP1 and 
GCR1, for example, are known to form a complex to regulate ribosomal gene expression 
(Deminoff and Santangelo, 2001).  Additionally, SFF, a key cell cycle TRE, was significant in 
many clusters of the present results, while it was not in the study by Tavazoie et al. (1999).    
 
As a final step in the TRE search, we compared the centers of clusters that were enriched for the 
same TRE or pair of TREs.  Our objective in doing so was to validate the assumption that genes 
with similar expression profiles are regulated similarly and thus have common TREs in their 
promoters.  Representative results are shown in Figure 27.  Overall, we observed that the centers 
of clusters enriched for the same TRE were highly similar, which strongly suggests that activity 
at the enriched TRE is responsible for the variations in gene expression of the member genes.  
We also observed that centers of clusters enriched for different TREs were noticeably different, 
demonstrating how activity at different TREs leads to differential regulation of gene expression.  
Taken together these results validate our assumptions and approach. 
 
Table 3: Number of clusters in which specific TREs were statistically over-represented. 

TRE Number of clustersa Number of genesb Number of genes verifiedc % Verified
RAP1e 10 191 31 16.2% 

RAP1-GCR1 9 342 51 14.9% 
ACE2-SWI5 4 66 12 18.2% 

SFF 12 303 26 8.6% 
STREe 15 270 1 0.4% 

STRE-MCB-1 d 11 579 3 0.5% 
SCB-MCBe 27 54 17 31.5% 

MCM1 13 6 0 0.0% 
(a) Out of a total of 500 clusters. 
(b) For MCM1 and SCB-MCB clusters, the number of genes is the number of genes that are shared by all clusters 
with that TRE (intersection).  For the other TREs, the intersection between all clusters was zero, therefore the 
number of genes shown is for the union of all genes found in clusters that were statistically over-represented for that 
particular TRE. 
(c) Verified indicates that protein-DNA interaction data (Lee et al., 2002) showed that the promoter of the gene was 
bound by at least one of the TFs that binds to the TRE. 
(d) “STRE-MCB-1” indicates clusters that were enriched for STRE TREs and depleted of MCB TREs. 
(e) TREs or TRE pairs that were found in Tavazoie et al. (1999). 
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(a)                                                              (b)

(c)  
Figure 27: Centers of clusters enriched for the same TRE (or pair of TREs). (a) Centers of clusters (27) in 
which the TREs SCB and MCB were statistically over-represented in the gene promoters.  (b) Centers of clusters 
(12) in which SFF was statistically over-represented.  (c) Centers of clusters (10) in which RAP1 was statistically 
over-represented.   From these plots it is clear that centers of clusters enriched for the same TRE are highly similar, 
while the centers of clusters enriched for different TREs are substantially different.  Expression data from Cho et al., 
1998; promoter and TRE information from SCPD (Zhu and Zhang, 1999). 
 
8.3.3 Assembling nuclear connectivity 
The final step in the determination of nuclear connectivity was to link the TREs back to the TFs 
that bind them.  We accomplished this by means of a literature search.  SCB and MCB are bound 
by the transcription factor SBF, a complex of SWI4 and SWI6, and MBF, a complex of MBP1 
and SWI6, respectively (Taylor et al., 2000).  Since the clusters that were enriched for SCB were 
also enriched for MCB, the genes contained in these clusters were treated as targets of SWI4 or 
MBP1 individually, or as targets of the product of SWI4 and MBP1 in the subsequent model 
identification.  SFF is largely bound by a complex of MCM1 and FKH2 (Kumar et al., 2000) and 
thus genes in clusters enriched for SFF treated as targets of MCM1 or FKH2 individually or the 
product of MCM1 and FKH2.  STRE is bound by MSN2 and/or MSN4 (Schmitt and McEntee, 
1996) and for this reason STRE cluster genes were treated as targets of MSN2, MSN4, or the 
product of MSN2 and MSN4. Although RAP1 is known to bind to promoters in a complex with 
GCR1 (Deminoff and Santangelo, 2001), for simplicity, genes that were in clusters enriched for 
RAP1 were modeled as targets of RAP1 individually.  Finally, ACE2 and SWI5 are known to 
regulate genes individually or jointly (Doolin et al., 2001) and thus the ACE2-SWI5 genes were 
treated targets of ACE2, SWI5, or the product of ACE2 and SWI5 in the subsequent modeling.  
 
Before proceeding to the model identification, we refined the nuclear connectivity by retaining 
only those TF-gene links that have been observed in the protein-DNA interaction data of Lee et 
al. (2002).  The results are given in Table 3, where verified genes were those for which at least 
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one predicted TF-gene binding interaction was observed by Lee et al. (2002).  It is apparent that 
the results were largely TF dependent, ranging from 30% verification of interactions for the 
SCB-MCB genes, ~20 per cent for RAP1 and ACE2-SWI5 genes, ~10 per cent for SFF genes, 
and ~0 per cent for STRE genes.  For the subsequent modeling, we used only the genes for 
which TF binding was verified.  Since none of the STRE genes were verified, an exception was 
made for STRE by randomly selecting 30 genes for model identification. 
 
8.3.4 Model identification 
Given the nuclear connectivity, it was possible to proceed to the model identification, which 
involved parameter estimation for, and selection between, the various dynamical model 
structures in Equations 2-6.  We performed model identification for only one loop of Figure 2(b).  
In other words, we only modeled how variation in the expression of the TFs leads to variation in 
the expression of their target genes.  We did not model how the TFs regulate the expression of 
the other TFs, although this is possible. We used the HMF method to estimate the parameters, 
which is appropriate for the gene expression data used in the present study because it was 
rendered asynchronous by poor hybridization at time points 90 and 100 minutes that led these 
data to be left out (Tavazoie et al., 1999).  For the mRNA degradation rate constant, di, we 
considered the minimum, mean, and maximum values for each gene given by Wang et al. 
(2002).  To add flexibility to the model identification, both the lagged and unlagged versions of 
the cytoplasmic model were used for each gene, and three parameterizations of q(⋅), 
corresponding to linear, weakly nonlinear, and strongly nonlinear, were used.  In summary, a 
total of 18 models were identified for each TF/target gene pairing. To investigate the importance 
of the prior knowledge of nuclear connectivity, we additionally modeled the ACE2-SWI5 target 
genes as targets of 10 other genes randomly selected from the set of all genes. To quantify the 
success of the model identification, we defined as well-modeled gene-TF pairings that had a sum 
of squared errors (SSE) between the experimental data and model prediction that was small on 
an absolute scale (SSE < 1.5), and on a relative scale in comparison to the SSE that would be 
obtained from a purely correlative model between the TF and the target gene 
(SSE(model)/SSE(correlation) < 0.66). By these criteria, well-modeled described identification 
results that were highly suggestive of causal links between the TFs and their target genes.  
 
8.3.5 Model identification results 
The results of the model identification are summarized in Table 4, where the number of genes 
that met the well-modeled criteria for each TF is indicated, along with whether the TF was found 
to be an activator or repressor of its targets, and any other systematic trends in the dynamical 
model structures (extent of nonlinearity, lag or no lag) of the TF target pairings that “modeled 
well”.  A complete listing of the identified model parameters is given in the online appendix 
(http://www.dbi.tju.edu/dbi/publications/cache04).  With the exception of the pairing of the 
ACE2-SWI5 genes as targets of random genes, all the genes that were well-modeled as targets of 
the same TF were either uniformly activated or repressed by that TF, suggesting that the TFs 
play specific roles as activators or repressors in the present system.   
 
Similarly to the verification of TF/target gene pairings with the protein-DNA interaction data, the 
number of genes that were well-modeled depended strongly on the gene group and the particular 
TF.  The SCB-MCB genes had the largest fraction that were well-modeled, with 70% of the 
genes verified as being bound by either SWI4 or MBP1 being well-modeled as activated targets 
of the product of SWI4 and MBP1, and 60 per cent of all the genes that were common to all 
SCB-MCB clusters being well-modeled as activated targets of SWI4.  Examples of these genes 
are shown in Figure 28.  Additionally, some genes were well-modeled as repressed targets of 
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MBP1, with a small subset of those also being well-modeled as activated targets of SWI4 and/or 
the product of SWI4 and MBP1 (example gene shown in Figure 28).  This result suggests that 
SWI4 and MBP1 may play opposing roles in regulating the expression of the SCB-MCB genes.  
Finally, the SCB-MCB genes were best modeled using the lag-free model, with the linear model 
being optimal for the genes modeled as targets of SWI4 and the product of SWI4 and MBP1, and 
the strongly nonlinear model being best for the targets of MBP1.   
 
The SFF genes had the second highest fraction that fit the criteria for being well-modeled, with 
40 per cent as activated targets of MCM1, and 30 per cent as repressed, lagged, targets of FKH2.  
Importantly, the sign of the TF first order degradation constant (e) in the lagged models was 
negative for the genes well-modeled as targets of FKH2.  This result weakens the case for a 
causal transcriptional link of the type postulated in Equation 5 between FKH2 and its targets, and 
suggests that a more complex model for FKH2 activity may be necessary.  Interestingly, unlike 
the SCB-MCB genes, the smallest fraction of SFF genes were well-modeled as targets of the 
product of MCM1 and FKH2.  Similar to the SCB-MCB genes, there were SFF genes that were 
well-modeled either as activated targets of MCM1 or repressed targets of FKH2.  Smaller 
fractions of the RAP1, STRE, and ACE2-SWI5 genes were well-modeled as compared to the 
SCB-MCB and SFF genes, suggesting that the activities of these TFs may be regulated post-
transcriptionally, requiring more complex structures for the cytoplasmic model h(·).  This is 
especially true for the STRE genes, for even those that were modeled-well as targets of MSN2 
and MSN4 gave rise to negative estimates for the parameter e, that, similarly to the SFF genes 
well modeled as targets of FKH2, suggests a more complex mode of transcriptional regulation.  
 
The results of modeling the ACE2-SWI5 genes as targets of randomly selected genes clearly 
demonstrated the importance of prior knowledge of nuclear connectivity in gene regulatory 
network modeling.  Comparable, and sometimes much greater, percentages of the ACE2-SWI5 
genes were well-modeled as targets of the random genes than their true regulators, ACE2 and 
SWI5.  Some of the genes, such as PCK1, KTR2, and LYS4, are involved in cellular processes 
that are very different from transcriptional regulation (TCA cycle, protein glycosylation, and 
lysine biosynthesis, respectively), and thus it is highly unlikely that the good identification 
results are anything other than artifact.  Illustrative examples are shown in Figure 29, where 
genes that are known to be targets of ACE2 and SWI5, individually or jointly, are well-modeled 
as targets of random genes. 
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Figure 28: Representative identification results for genes modeled as targets of MBP1 (binds to 
MCB), SWI4 (binds to SCB), or the product of SWI4 and MBP1. (a and b) Example of a gene that is 
well-modeled as a repressed target of MBP1 (a) or an activated target of SWI4 (b).  (c) Example of a gene 
best modeled as an activated target of the product of SWI4 and MBP1.  (d) Example of a gene best 
modeled as an activated target of SWI4 alone.  Dashed lines: xTF(t), the scaled mRNA level of the TF (or 
scaled product of the mRNA levels of the TFs) that regulates the gene.  Solid line, crosses: x0(t), the 
experimental expression level of the regulated gene.  Thick, smooth line: xE(t), the expression level of the 
gene predicted from the model identification. 
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Table 4: Model identification results: (Table 4 caption on following page)  
RAP1 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
RAP1 5 16.1% ~ yes activator 

ACE2-SWI5 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
ACE2 2 16.7% ~ yes activator 
SWI5 3 25.0% ~ ~ activator 

ACE2*SWI5 3 25.0% ~ ~ activator 
SFF 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
FKH2 8 30.8% strong yes repressor 
MCM1 11 42.3% ~ ~ activator 

MCM1*FKH2 5 19.2% strong no activator 
STRE 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
MSN2 5 16.7% strong yes activator 
MSN4 3 10.0% strong yes activator 

MSN2*MSN4 0 0.0% ~ ~ ~ 
SCB-MCB (verified) 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
MBP1 4 23.5% strong ~ repressor 
SWI4 10 58.8% linear no activator 

MBP1*SWI4 12 70.6% linear no activator 
SCB-MCB (all) 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
MBP1 7 13.0% strong no repressor 
SWI4 33 61.1% linear no activator 

MBP1*SWI4 22 40.7% linear no activator 
ACE2-SWI5 (rand) 

TF 
Number of 

Genes %Genes Nonlinearity Lag Activator/Repressor 
YDR012W 1 8.3% strong no repressor 
YLR395C 1 8.3% weak yes repressor 

PCK1 5 41.7% ~ yes repressor 
YNL114C 8 66.7% strong ~ ~ 
YPR182W 1 8.3% weak yes repressor 

KTR3 3 25.0% ~ ~ activator 
YIR043C 6 50.0% ~ yes activator 
YNR073C 8 66.7% strong no repressor 
YKL161C 2 16.7% linear no activator 

LYS4 2 16.7% weak yes activator 
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Table 4: Model identification results: (see above) Number of genes is the number of genes that were well modeled 
as targets of the TFs that bind to TREs that were statistically over-represented in the clusters of which the genes 
were members.  Nonlinearity indicates the degree of nonlinearity that gave the smallest SSE for the genes that were 
well modeled as targets of the TF.  Lag indicates whether or not the lagged model gave the smallest SSE for genes 
that were well modeled as targets of the TF.  Activator/Repressor indicates whether the TF was found to be a 
transcriptional activator or transcriptional repressor of the genes modeled as targets of the TF.  “~” indicates that the 
results were gene dependent. 
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Figure 29: Representative results of modeling targets of ACE2/SWI5 as targets of ACE2/SWI5 or 
random genes.  (a and b) Example of a gene that is known to be jointly regulated by ACE2 and SWI5 
(Doolin et al., 2001) that is reasonably well modeled as a target of the product of ACE2 and SWI5 (a) or a 
random gene (b), in this case, a member of the lysine biosynthesis pathway.  (c and d) Example of a gene 
known to be regulated by ACE2 (Doolin et al., 2001) that is not well modeled as a target of ACE2 (c) but 
is very well modeled as a target of a random gene (d), in this case a gene with unknown function.  Dashed 
lines: xTF(t), the scaled mRNA level of the TF (or scaled product of the mRNA levels of the TFs) that 
regulates the gene.  Solid line, crosses: x0(t), the experimental expression level of the regulated gene.  
Thick, smooth line: xE(t), the expression level of the gene predicted from the model identification. 
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9 Conclusions 
In the present project, we have demonstrated how systems engineering approaches that explicitly 
recognize the complexities, constraints, and idiosyncrasies of biological systems can effectively 
handle complex biological problems.  We described how imposing structure via fundamental 
knowledge and the inclusion of multiple types of data into the resulting structured modeling and 
identification approach can render an otherwise intractable problem more tractable (although this 
is achieved at the expense of introducing additional idiosyncrasies specific to each type of 
additional data).  Given the current rate of progress in genomic sequencing, annotation, and 
bioinformatics tool development, additional data types and information that may constrain model 
structures are increasingly available.  There is no reason to exclude these data types from 
attempts to model gene regulation because they are available for practically any system of 
interest.  While the data collections for all organisms are not currently as extensive as they are 
for yeast, the information that is available can nevertheless significantly enhance the modeling 
efforts.  For example, merely specifying that only TFs may regulate the expression of genes can 
reduce the number of model parameters by an order of magnitude.  Using data that is currently 
available for yeast, we demonstrated a framework for integrating multiple data types into 
subcellular and nuclear connectivity structures that may be used as prior knowledge in the 
modeling and identification of gene regulatory networks.  Nuclear connectivity, as obtained 
through a structured modeling approach, specifies which genes are regulated by which TFs and 
can greatly improve the tractability of the gene network identification problem. 
 
In case studies 1 through 4, PAINT, in combination with experimentally associated genes list and 
genomic sequence data, has identified the TREs and cognate TFs likely to subserve the 
biological regulation studied in each case. These results are discovered in a scalable and 
automated manner using a bioinformatics approach to analyze the data from global methods such 
as microarrays, ChIP, etc. The primary purpose of PAINT is to provide a scalable and extensible 
platform to automate the process of mining the existing databases for known regulatory 
information for a large number of genes of interest in a particular experiment or analysis. The 
interaction matrix generated represents candidate connections in the regulatory network. In a 
particular experiment, only a subset of transcription factors in the cell is active. The over-
represented TREs identified from CIM indicate a set of TREs that are likely to be active. Time 
series data of TF activity from ChIP or promoter binding assays provides a set of active TFs. By 
combining these two sets together, the most likely regulators in that particular experimental 
context are obtained. Combining this data with the interaction matrix from PAINT, a smaller 
subset of interaction matrix that represents the candidate network specific to that particular 
experimental perturbation can be constructed. 
 
The experimental and computational methods presented here identify a set of genes and 
transcription factors that are significant in understanding the function of the gene regulatory 
network in question. As demonstrated in the Case study 5, this network structure information can 
be directly utilized in construction of an in silico model of the regulatory network. Incorporation 
of this model into simulations along with models of signaling pathways and electrophysiology is 
the key to analyzing the immediate, intermediate and long-lasting cellular response to an external 
signal. 
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11 List of Acronyms 
 
Acronym  Description 
CE   Composite Elements 
ChIP   Chromatin Immunoprecipitation 
CIM   Candidate Interaction Matrix 
CRE   Cyclic-AMP Response Element 
EGF    Epidermal Growth Factor  
GUI   Graphical User Interface 
IOD   Input-Output Differential 
KAGAN  Karyote Genome Analyzer 
MCB   MluI cell-cycle Box 
MF   Modulating Function 
NCA   Network Component Analysis 
ORF   Open Reading Frame 
OAA   Open Agent Architecture 
PAINT   Promoter Analysis and Interaction Network Tool 
SCB   Swi4-dependent cell-cycle Box 
SCN   SupraChiasmastic Nucleus 
SCPD   S. cerevisae Promoter Database 
SEB   Staphylococcal Enterotoxin B 
SSE   Sum of Squared Errors 
TF   Transcription Factor 
TRE   Transcriptional Regulatory Element 
TRNA   Transcriptional Regulatory Network Analysis 
TSS   Transcription Start Sites 
UTR   Untranslated Region 
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